Welcome to Westonci.ca, the place where your questions are answered by a community of knowledgeable contributors. Get quick and reliable solutions to your questions from a community of seasoned experts on our user-friendly platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
Of course, let's go through the solution step by step:
We are given the system of linear equations:
[tex]\[ \left\{ \begin{array}{l} x - 3y = 7 \\ 2x + y = 21 \end{array} \right. \][/tex]
Step 1: Solve one of the equations for one variable
First, we solve the second equation for [tex]\( y \)[/tex]:
[tex]\[ 2x + y = 21 \][/tex]
Isolate [tex]\( y \)[/tex]:
[tex]\[ y = 21 - 2x \][/tex]
Step 2: Substitute this expression into the other equation
Next, we substitute [tex]\( y = 21 - 2x \)[/tex] into the first equation:
[tex]\[ x - 3(21 - 2x) = 7 \][/tex]
Simplify and solve for [tex]\( x \)[/tex]:
[tex]\[ x - 63 + 6x = 7 \][/tex]
Combine like terms:
[tex]\[ 7x - 63 = 7 \][/tex]
Add 63 to both sides:
[tex]\[ 7x = 70 \][/tex]
Divide by 7:
[tex]\[ x = 10 \][/tex]
Step 3: Substitute [tex]\( x \)[/tex] back into the expression for [tex]\( y \)[/tex]
Substitute [tex]\( x = 10 \)[/tex] back into the expression [tex]\( y = 21 - 2x \)[/tex] to find [tex]\( y \)[/tex]:
[tex]\[ y = 21 - 2(10) \][/tex]
Calculate:
[tex]\[ y = 21 - 20 \][/tex]
[tex]\[ y = 1 \][/tex]
Thus, the solution to the system of equations is:
[tex]\[ x = 10, \quad y = 1 \][/tex]
So, the solution is [tex]\((x, y) = (10, 1)\)[/tex].
We are given the system of linear equations:
[tex]\[ \left\{ \begin{array}{l} x - 3y = 7 \\ 2x + y = 21 \end{array} \right. \][/tex]
Step 1: Solve one of the equations for one variable
First, we solve the second equation for [tex]\( y \)[/tex]:
[tex]\[ 2x + y = 21 \][/tex]
Isolate [tex]\( y \)[/tex]:
[tex]\[ y = 21 - 2x \][/tex]
Step 2: Substitute this expression into the other equation
Next, we substitute [tex]\( y = 21 - 2x \)[/tex] into the first equation:
[tex]\[ x - 3(21 - 2x) = 7 \][/tex]
Simplify and solve for [tex]\( x \)[/tex]:
[tex]\[ x - 63 + 6x = 7 \][/tex]
Combine like terms:
[tex]\[ 7x - 63 = 7 \][/tex]
Add 63 to both sides:
[tex]\[ 7x = 70 \][/tex]
Divide by 7:
[tex]\[ x = 10 \][/tex]
Step 3: Substitute [tex]\( x \)[/tex] back into the expression for [tex]\( y \)[/tex]
Substitute [tex]\( x = 10 \)[/tex] back into the expression [tex]\( y = 21 - 2x \)[/tex] to find [tex]\( y \)[/tex]:
[tex]\[ y = 21 - 2(10) \][/tex]
Calculate:
[tex]\[ y = 21 - 20 \][/tex]
[tex]\[ y = 1 \][/tex]
Thus, the solution to the system of equations is:
[tex]\[ x = 10, \quad y = 1 \][/tex]
So, the solution is [tex]\((x, y) = (10, 1)\)[/tex].
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.