Westonci.ca is the best place to get answers to your questions, provided by a community of experienced and knowledgeable experts. Explore a wealth of knowledge from professionals across different disciplines on our comprehensive platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To solve this problem, let's first understand the meaning of each logical operator:
1. [tex]\(p \vee q\)[/tex]: This represents the logical "or". It is true if either [tex]\(p\)[/tex] or [tex]\(q\)[/tex] is true (or both are true).
2. [tex]\(p \wedge q\)[/tex]: This represents the logical "and". It is true if both [tex]\(p\)[/tex] and [tex]\(q\)[/tex] are true simultaneously.
3. [tex]\(p \rightarrow q\)[/tex]: This represents the logical "implication". It means "if [tex]\(p\)[/tex] then [tex]\(q\)[/tex]", and is true in all cases except when [tex]\(p\)[/tex] is true and [tex]\(q\)[/tex] is false.
Given:
- [tex]\(p\)[/tex]: [tex]\(x=4\)[/tex]
- [tex]\(q\)[/tex]: [tex]\(y=-2\)[/tex]
We need to represent the statement "If [tex]\(x=4\)[/tex], then [tex]\(y=-2\)[/tex]". This statement is a classical implication in logic, where the antecedent (if part) is [tex]\(p\)[/tex] and the consequent (then part) is [tex]\(q\)[/tex].
The appropriate logical representation for the statement "If [tex]\(x=4\)[/tex], then [tex]\(y=-2\)[/tex]" is [tex]\(p \rightarrow q\)[/tex].
Thus, the correct answer is:
[tex]\(p \rightarrow q\)[/tex]
So among the given options, the answer is the third option.
1. [tex]\(p \vee q\)[/tex]: This represents the logical "or". It is true if either [tex]\(p\)[/tex] or [tex]\(q\)[/tex] is true (or both are true).
2. [tex]\(p \wedge q\)[/tex]: This represents the logical "and". It is true if both [tex]\(p\)[/tex] and [tex]\(q\)[/tex] are true simultaneously.
3. [tex]\(p \rightarrow q\)[/tex]: This represents the logical "implication". It means "if [tex]\(p\)[/tex] then [tex]\(q\)[/tex]", and is true in all cases except when [tex]\(p\)[/tex] is true and [tex]\(q\)[/tex] is false.
Given:
- [tex]\(p\)[/tex]: [tex]\(x=4\)[/tex]
- [tex]\(q\)[/tex]: [tex]\(y=-2\)[/tex]
We need to represent the statement "If [tex]\(x=4\)[/tex], then [tex]\(y=-2\)[/tex]". This statement is a classical implication in logic, where the antecedent (if part) is [tex]\(p\)[/tex] and the consequent (then part) is [tex]\(q\)[/tex].
The appropriate logical representation for the statement "If [tex]\(x=4\)[/tex], then [tex]\(y=-2\)[/tex]" is [tex]\(p \rightarrow q\)[/tex].
Thus, the correct answer is:
[tex]\(p \rightarrow q\)[/tex]
So among the given options, the answer is the third option.
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.