Welcome to Westonci.ca, your go-to destination for finding answers to all your questions. Join our expert community today! Our platform connects you with professionals ready to provide precise answers to all your questions in various areas of expertise. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To model the height of the rocket after [tex]\( t \)[/tex] seconds using the given parameters, let's start by understanding the provided variables and the general equation of projectile motion.
The general equation of projectile motion is:
[tex]\[ s(t) = g \cdot t^2 + v_0 \cdot t + s_0 \][/tex]
Here:
- [tex]\( g \)[/tex] is the acceleration due to gravity, which is given as [tex]\( -4.9 \, \text{m/s}^2 \)[/tex].
- [tex]\( v_0 \)[/tex] is the initial velocity, which is given as [tex]\( 39.2 \, \text{m/s} \)[/tex].
- [tex]\( s_0 \)[/tex] is the initial height, which is [tex]\( 0 \, \text{m} \)[/tex] since the rocket is launched from the ground.
Substituting these values into the general equation, we get:
[tex]\[ s(t) = -4.9 \cdot t^2 + 39.2 \cdot t + 0 \][/tex]
Because the initial height [tex]\( s_0 \)[/tex] is zero, the equation simplifies to:
[tex]\[ s(t) = -4.9 \cdot t^2 + 39.2 \cdot t \][/tex]
Therefore, the equation that can be used to model the height of the rocket after [tex]\( t \)[/tex] seconds is:
[tex]\[ s(t) = -4.9 t^2 + 39.2 t \][/tex]
Among the given options, this corresponds to the second option:
[tex]\[ s(t) = -4.9 t^2 + 39.2 t \][/tex]
The general equation of projectile motion is:
[tex]\[ s(t) = g \cdot t^2 + v_0 \cdot t + s_0 \][/tex]
Here:
- [tex]\( g \)[/tex] is the acceleration due to gravity, which is given as [tex]\( -4.9 \, \text{m/s}^2 \)[/tex].
- [tex]\( v_0 \)[/tex] is the initial velocity, which is given as [tex]\( 39.2 \, \text{m/s} \)[/tex].
- [tex]\( s_0 \)[/tex] is the initial height, which is [tex]\( 0 \, \text{m} \)[/tex] since the rocket is launched from the ground.
Substituting these values into the general equation, we get:
[tex]\[ s(t) = -4.9 \cdot t^2 + 39.2 \cdot t + 0 \][/tex]
Because the initial height [tex]\( s_0 \)[/tex] is zero, the equation simplifies to:
[tex]\[ s(t) = -4.9 \cdot t^2 + 39.2 \cdot t \][/tex]
Therefore, the equation that can be used to model the height of the rocket after [tex]\( t \)[/tex] seconds is:
[tex]\[ s(t) = -4.9 t^2 + 39.2 t \][/tex]
Among the given options, this corresponds to the second option:
[tex]\[ s(t) = -4.9 t^2 + 39.2 t \][/tex]
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.