Welcome to Westonci.ca, where curiosity meets expertise. Ask any question and receive fast, accurate answers from our knowledgeable community. Experience the convenience of getting accurate answers to your questions from a dedicated community of professionals. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To identify the type of function represented by [tex]\( f(x) = 4 \cdot 2^x \)[/tex], let's analyze the function step-by-step.
1. Form of the Function:
- The given function is [tex]\( f(x) = 4 \cdot 2^x \)[/tex].
- This is in the form of [tex]\( f(x) = a \cdot b^x \)[/tex], where [tex]\( a \)[/tex] and [tex]\( b \)[/tex] are constants and [tex]\( x \)[/tex] is the variable.
2. Identifying Exponential Functions:
- Functions of the form [tex]\( f(x) = a \cdot b^x \)[/tex] are classified as exponential functions.
- If [tex]\( b > 1 \)[/tex], the function represents exponential growth.
- If [tex]\( 0 < b < 1 \)[/tex], the function represents exponential decay.
- In our function, [tex]\( a = 4 \)[/tex] and [tex]\( b = 2 \)[/tex].
3. Analyzing the Base (b):
- Here, [tex]\( b = 2 \)[/tex].
- Since [tex]\( 2 > 1 \)[/tex], the function [tex]\( f(x) = 4 \cdot 2^x \)[/tex] represents exponential growth.
4. Conclusion:
- Based on the condition that [tex]\( b > 1 \)[/tex], the function [tex]\( f(x) = 4 \cdot 2^x \)[/tex] must be classified as an exponential growth function.
Therefore, the correct answer is:
D. Exponential growth
1. Form of the Function:
- The given function is [tex]\( f(x) = 4 \cdot 2^x \)[/tex].
- This is in the form of [tex]\( f(x) = a \cdot b^x \)[/tex], where [tex]\( a \)[/tex] and [tex]\( b \)[/tex] are constants and [tex]\( x \)[/tex] is the variable.
2. Identifying Exponential Functions:
- Functions of the form [tex]\( f(x) = a \cdot b^x \)[/tex] are classified as exponential functions.
- If [tex]\( b > 1 \)[/tex], the function represents exponential growth.
- If [tex]\( 0 < b < 1 \)[/tex], the function represents exponential decay.
- In our function, [tex]\( a = 4 \)[/tex] and [tex]\( b = 2 \)[/tex].
3. Analyzing the Base (b):
- Here, [tex]\( b = 2 \)[/tex].
- Since [tex]\( 2 > 1 \)[/tex], the function [tex]\( f(x) = 4 \cdot 2^x \)[/tex] represents exponential growth.
4. Conclusion:
- Based on the condition that [tex]\( b > 1 \)[/tex], the function [tex]\( f(x) = 4 \cdot 2^x \)[/tex] must be classified as an exponential growth function.
Therefore, the correct answer is:
D. Exponential growth
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.