Find the best answers to your questions at Westonci.ca, where experts and enthusiasts provide accurate, reliable information. Get detailed and accurate answers to your questions from a community of experts on our comprehensive Q&A platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To determine the type of slope for the line that passes through each pair of given points, we can follow a step-by-step process. Recall that the slope of a line between two points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] is given by:
[tex]\[ \text{slope} = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]
Let's analyze each pair of points:
1. Points [tex]\((-7, 8)\)[/tex] and [tex]\((-7, 0)\)[/tex]
- Here, [tex]\(x_1 = x_2 = -7\)[/tex]. When the x-coordinates are the same, the line is vertical.
- The slope of a vertical line is undefined.
- Therefore, the slope is undefined.
2. Points [tex]\((3, 5)\)[/tex] and [tex]\((-1, 2)\)[/tex]
- Calculate the slope: [tex]\(\frac{2 - 5}{-1 - 3} = \frac{-3}{-4} = \frac{3}{4}\)[/tex].
- Because the result is positive, the slope is positive.
- Therefore, the slope is positive.
3. Points [tex]\((6, -3)\)[/tex] and [tex]\((-4, -3)\)[/tex]
- Here, [tex]\(y_1 = y_2 = -3\)[/tex]. When the y-coordinates are the same, the line is horizontal.
- The slope of a horizontal line is zero.
- Therefore, the slope is zero.
4. Points [tex]\((2, 4)\)[/tex] and [tex]\((5, 1)\)[/tex]
- Calculate the slope: [tex]\(\frac{1 - 4}{5 - 2} = \frac{-3}{3} = -1\)[/tex].
- Because the result is negative, the slope is negative.
- Therefore, the slope is negative.
To summarize:
- The slope for the line through points [tex]\((-7, 8)\)[/tex] and [tex]\((-7, 0)\)[/tex] is undefined.
- The slope for the line through points [tex]\((3, 5)\)[/tex] and [tex]\((-1, 2)\)[/tex] is positive.
- The slope for the line through points [tex]\((6, -3)\)[/tex] and [tex]\((-4, -3)\)[/tex] is zero.
- The slope for the line through points [tex]\((2, 4)\)[/tex] and [tex]\((5, 1)\)[/tex] is negative.
[tex]\[ \text{slope} = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]
Let's analyze each pair of points:
1. Points [tex]\((-7, 8)\)[/tex] and [tex]\((-7, 0)\)[/tex]
- Here, [tex]\(x_1 = x_2 = -7\)[/tex]. When the x-coordinates are the same, the line is vertical.
- The slope of a vertical line is undefined.
- Therefore, the slope is undefined.
2. Points [tex]\((3, 5)\)[/tex] and [tex]\((-1, 2)\)[/tex]
- Calculate the slope: [tex]\(\frac{2 - 5}{-1 - 3} = \frac{-3}{-4} = \frac{3}{4}\)[/tex].
- Because the result is positive, the slope is positive.
- Therefore, the slope is positive.
3. Points [tex]\((6, -3)\)[/tex] and [tex]\((-4, -3)\)[/tex]
- Here, [tex]\(y_1 = y_2 = -3\)[/tex]. When the y-coordinates are the same, the line is horizontal.
- The slope of a horizontal line is zero.
- Therefore, the slope is zero.
4. Points [tex]\((2, 4)\)[/tex] and [tex]\((5, 1)\)[/tex]
- Calculate the slope: [tex]\(\frac{1 - 4}{5 - 2} = \frac{-3}{3} = -1\)[/tex].
- Because the result is negative, the slope is negative.
- Therefore, the slope is negative.
To summarize:
- The slope for the line through points [tex]\((-7, 8)\)[/tex] and [tex]\((-7, 0)\)[/tex] is undefined.
- The slope for the line through points [tex]\((3, 5)\)[/tex] and [tex]\((-1, 2)\)[/tex] is positive.
- The slope for the line through points [tex]\((6, -3)\)[/tex] and [tex]\((-4, -3)\)[/tex] is zero.
- The slope for the line through points [tex]\((2, 4)\)[/tex] and [tex]\((5, 1)\)[/tex] is negative.
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.