Discover answers to your questions with Westonci.ca, the leading Q&A platform that connects you with knowledgeable experts. Discover precise answers to your questions from a wide range of experts on our user-friendly Q&A platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To solve the inequality [tex]\(2.9(x + 8) < 26.1\)[/tex] and determine the solution set, follow these detailed steps:
### Step 1: Distribute the 2.9
First, we need to distribute the 2.9 inside the parenthesis:
[tex]\[ 2.9(x + 8) = 2.9 \cdot x + 2.9 \cdot 8 \][/tex]
[tex]\[ 2.9x + 23.2 \][/tex]
So the inequality becomes:
[tex]\[ 2.9x + 23.2 < 26.1 \][/tex]
### Step 2: Isolate the variable term
Next, we isolate the term with the variable [tex]\(x\)[/tex]. To do this, subtract 23.2 from both sides of the inequality:
[tex]\[ 2.9x + 23.2 - 23.2 < 26.1 - 23.2 \][/tex]
[tex]\[ 2.9x < 2.9 \][/tex]
### Step 3: Solve for [tex]\(x\)[/tex]
Now, we need to solve for [tex]\(x\)[/tex] by dividing both sides of the inequality by 2.9:
[tex]\[ \frac{2.9x}{2.9} < \frac{2.9}{2.9} \][/tex]
[tex]\[ x < 1 \][/tex]
### Conclusion:
The solution set of the inequality is [tex]\( x < 1 \)[/tex].
### Graphing the Solution Set:
1. Draw a number line.
2. Mark the point [tex]\( x = 1 \)[/tex] on the number line.
3. Since the inequality is strictly less than ([tex]\( < \)[/tex]) and not less than or equal to ([tex]\( \leq \)[/tex]), we use an open circle at [tex]\( x = 1 \)[/tex] to indicate that [tex]\( x = 1 \)[/tex] is not included in the solution set.
4. Shade the region to the left of [tex]\( x = 1 \)[/tex] to represent all the values of [tex]\( x \)[/tex] that are less than 1.
The graph of the solution set will show an open circle at [tex]\( x = 1 \)[/tex] with shading extending to the left along the number line.
### Step 1: Distribute the 2.9
First, we need to distribute the 2.9 inside the parenthesis:
[tex]\[ 2.9(x + 8) = 2.9 \cdot x + 2.9 \cdot 8 \][/tex]
[tex]\[ 2.9x + 23.2 \][/tex]
So the inequality becomes:
[tex]\[ 2.9x + 23.2 < 26.1 \][/tex]
### Step 2: Isolate the variable term
Next, we isolate the term with the variable [tex]\(x\)[/tex]. To do this, subtract 23.2 from both sides of the inequality:
[tex]\[ 2.9x + 23.2 - 23.2 < 26.1 - 23.2 \][/tex]
[tex]\[ 2.9x < 2.9 \][/tex]
### Step 3: Solve for [tex]\(x\)[/tex]
Now, we need to solve for [tex]\(x\)[/tex] by dividing both sides of the inequality by 2.9:
[tex]\[ \frac{2.9x}{2.9} < \frac{2.9}{2.9} \][/tex]
[tex]\[ x < 1 \][/tex]
### Conclusion:
The solution set of the inequality is [tex]\( x < 1 \)[/tex].
### Graphing the Solution Set:
1. Draw a number line.
2. Mark the point [tex]\( x = 1 \)[/tex] on the number line.
3. Since the inequality is strictly less than ([tex]\( < \)[/tex]) and not less than or equal to ([tex]\( \leq \)[/tex]), we use an open circle at [tex]\( x = 1 \)[/tex] to indicate that [tex]\( x = 1 \)[/tex] is not included in the solution set.
4. Shade the region to the left of [tex]\( x = 1 \)[/tex] to represent all the values of [tex]\( x \)[/tex] that are less than 1.
The graph of the solution set will show an open circle at [tex]\( x = 1 \)[/tex] with shading extending to the left along the number line.
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.