Welcome to Westonci.ca, where finding answers to your questions is made simple by our community of experts. Experience the ease of finding quick and accurate answers to your questions from professionals on our platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To calculate the mass that Sarita lifted given the power, height, and time, we can use the relationship between power, work, and energy. Let’s break it down step by step:
1. Power (P) is the rate at which work is done. It is given by the formula:
[tex]\[ P = \frac{\text{Work}}{\text{time}} \][/tex]
Here, the power provided is [tex]\(480 \, \text{watts}\)[/tex].
2. Work (W) done is equivalent to the gravitational potential energy gained by the mass lifted. This can be calculated using:
[tex]\[ W = m \cdot g \cdot h \][/tex]
where [tex]\(m\)[/tex] is the mass, [tex]\(g\)[/tex] is the acceleration due to gravity ([tex]\(9.81 \, \text{m/s}^2\)[/tex]), and [tex]\(h\)[/tex] is the height ([tex]\(10 \, \text{meters}\)[/tex]).
3. Rearrange the power formula to solve for the work done:
[tex]\[ \text{Work} = P \cdot \text{time} \][/tex]
Given the power ([tex]\(480 \, \text{watts}\)[/tex]) and the time ([tex]\(12 \, \text{seconds}\)[/tex]):
[tex]\[ \text{Work} = 480 \, \text{watts} \cdot 12 \, \text{seconds} = 5760 \, \text{joules} \][/tex]
4. Substitute this value of work into the potential energy formula to solve for [tex]\(m\)[/tex]:
[tex]\[ 5760 \, \text{joules} = m \cdot 9.81 \, \text{m/s}^2 \cdot 10 \, \text{meters} \][/tex]
5. Isolate [tex]\(m\)[/tex] (mass) to find its value:
[tex]\[ m = \frac{5760 \, \text{joules}}{9.81 \, \text{m/s}^2 \cdot 10 \, \text{meters}} \][/tex]
[tex]\[ m \approx 58.716 \, \text{kg} \][/tex]
Conclusion:
So, Sarita lifted approximately [tex]\(58.716 \, \text{kg}\)[/tex] up to [tex]\(10 \, \text{meters}\)[/tex] in [tex]\(12 \, \text{seconds}\)[/tex].
1. Power (P) is the rate at which work is done. It is given by the formula:
[tex]\[ P = \frac{\text{Work}}{\text{time}} \][/tex]
Here, the power provided is [tex]\(480 \, \text{watts}\)[/tex].
2. Work (W) done is equivalent to the gravitational potential energy gained by the mass lifted. This can be calculated using:
[tex]\[ W = m \cdot g \cdot h \][/tex]
where [tex]\(m\)[/tex] is the mass, [tex]\(g\)[/tex] is the acceleration due to gravity ([tex]\(9.81 \, \text{m/s}^2\)[/tex]), and [tex]\(h\)[/tex] is the height ([tex]\(10 \, \text{meters}\)[/tex]).
3. Rearrange the power formula to solve for the work done:
[tex]\[ \text{Work} = P \cdot \text{time} \][/tex]
Given the power ([tex]\(480 \, \text{watts}\)[/tex]) and the time ([tex]\(12 \, \text{seconds}\)[/tex]):
[tex]\[ \text{Work} = 480 \, \text{watts} \cdot 12 \, \text{seconds} = 5760 \, \text{joules} \][/tex]
4. Substitute this value of work into the potential energy formula to solve for [tex]\(m\)[/tex]:
[tex]\[ 5760 \, \text{joules} = m \cdot 9.81 \, \text{m/s}^2 \cdot 10 \, \text{meters} \][/tex]
5. Isolate [tex]\(m\)[/tex] (mass) to find its value:
[tex]\[ m = \frac{5760 \, \text{joules}}{9.81 \, \text{m/s}^2 \cdot 10 \, \text{meters}} \][/tex]
[tex]\[ m \approx 58.716 \, \text{kg} \][/tex]
Conclusion:
So, Sarita lifted approximately [tex]\(58.716 \, \text{kg}\)[/tex] up to [tex]\(10 \, \text{meters}\)[/tex] in [tex]\(12 \, \text{seconds}\)[/tex].
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.