Westonci.ca is your trusted source for finding answers to a wide range of questions, backed by a knowledgeable community. Ask your questions and receive accurate answers from professionals with extensive experience in various fields on our platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To analyze the behavior of the function [tex]\( f(x) = -(x+6)(x+2) \)[/tex], we need to understand its properties, specifically where it increases and where it decreases.
1. Identify the roots: The given function is a quadratic function, which can be written in standard form as:
[tex]\[ f(x) = -(x+6)(x+2) \][/tex]
Expanding this, we get:
[tex]\[ f(x) = -(x^2 + 8x + 12) = -x^2 - 8x - 12 \][/tex]
The roots of the function are [tex]\( x = -6 \)[/tex] and [tex]\( x = -2 \)[/tex].
2. Vertex of the parabola: Since this is a quadratic function that opens downwards (the coefficient of [tex]\( x^2 \)[/tex] is negative), the vertex represents the maximum point. The x-coordinate of the vertex can be found using the midpoint of the roots:
[tex]\[ x_{\text{vertex}} = \frac{x_1 + x_2}{2} = \frac{-6 + (-2)}{2} = \frac{-8}{2} = -4 \][/tex]
3. Intervals of increase and decrease:
- For [tex]\( x < -4 \)[/tex], the function is decreasing because we are moving away from the vertex to the left.
- For [tex]\( x > -4 \)[/tex], the function is also decreasing because we are moving away from the vertex to the right.
- Specifically, the function will be increasing as we move towards the vertex from each side. Therefore, it increases on the interval [tex]\( -6 < x < -2 \)[/tex].
Given this analysis, the correct statement about the function is:
[tex]\[ \text{The function is increasing for all real values of } x \text{ where } -6 < x < -2. \][/tex]
Thus, the answer is:
The function is increasing for all real values of [tex]\( x \)[/tex] where [tex]\( -6 < x < -2 \)[/tex].
1. Identify the roots: The given function is a quadratic function, which can be written in standard form as:
[tex]\[ f(x) = -(x+6)(x+2) \][/tex]
Expanding this, we get:
[tex]\[ f(x) = -(x^2 + 8x + 12) = -x^2 - 8x - 12 \][/tex]
The roots of the function are [tex]\( x = -6 \)[/tex] and [tex]\( x = -2 \)[/tex].
2. Vertex of the parabola: Since this is a quadratic function that opens downwards (the coefficient of [tex]\( x^2 \)[/tex] is negative), the vertex represents the maximum point. The x-coordinate of the vertex can be found using the midpoint of the roots:
[tex]\[ x_{\text{vertex}} = \frac{x_1 + x_2}{2} = \frac{-6 + (-2)}{2} = \frac{-8}{2} = -4 \][/tex]
3. Intervals of increase and decrease:
- For [tex]\( x < -4 \)[/tex], the function is decreasing because we are moving away from the vertex to the left.
- For [tex]\( x > -4 \)[/tex], the function is also decreasing because we are moving away from the vertex to the right.
- Specifically, the function will be increasing as we move towards the vertex from each side. Therefore, it increases on the interval [tex]\( -6 < x < -2 \)[/tex].
Given this analysis, the correct statement about the function is:
[tex]\[ \text{The function is increasing for all real values of } x \text{ where } -6 < x < -2. \][/tex]
Thus, the answer is:
The function is increasing for all real values of [tex]\( x \)[/tex] where [tex]\( -6 < x < -2 \)[/tex].
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.