Welcome to Westonci.ca, your ultimate destination for finding answers to a wide range of questions from experts. Get detailed answers to your questions from a community of experts dedicated to providing accurate information. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To determine if the given functions have critical points, we need to find the partial derivatives with respect to [tex]\(x\)[/tex] and [tex]\(y\)[/tex], and then set these partial derivatives equal to zero.
1) [tex]\( f(x, y) = 2 - x^2 - y^2 \)[/tex]
Partial derivatives:
- [tex]\( f_x = \frac{\partial f}{\partial x} = -2x \)[/tex]
- [tex]\( f_y = \frac{\partial f}{\partial y} = -2y \)[/tex]
Setting partial derivatives equal to zero:
- [tex]\( -2x = 0 \Rightarrow x = 0 \)[/tex]
- [tex]\( -2y = 0 \Rightarrow y = 0 \)[/tex]
Thus, the critical point is [tex]\( (0,0) \)[/tex].
2) [tex]\( f(x, y) = 1 - \sqrt[3]{x^2 y^2} \)[/tex]
Partial derivatives:
- [tex]\( f_x = \frac{\partial f}{\partial x} = \frac{-2y^2}{3 (x^2 y^2)^{2/3}} = -\frac{2y^2}{3(x^2 y^2)^{2/3}} \)[/tex]
- [tex]\( f_y = \frac{\partial f}{\partial y} = \frac{-2x^2}{3 (x^2 y^2)^{2/3}} = -\frac{2x^2}{3(x^2 y^2)^{2/3}} \)[/tex]
Setting partial derivatives equal to zero:
- [tex]\( -\frac{2y^2}{3(x^2 y^2)^{2/3}} = 0 \Rightarrow y = 0 \)[/tex]
- [tex]\( -\frac{2x^2}{3(x^2 y^2)^{2/3}} = 0 \Rightarrow x = 0 \)[/tex]
Thus, the critical point is [tex]\( (0,0) \)[/tex].
3) [tex]\( f(x, y) = x^4 + y^4 - 4xy + 1 \)[/tex]
Partial derivatives:
- [tex]\( f_x = \frac{\partial f}{\partial x} = 4x^3 - 4y \)[/tex]
- [tex]\( f_y = \frac{\partial f}{\partial y} = 4y^3 - 4x \)[/tex]
Setting partial derivatives equal to zero:
- [tex]\( 4x^3 - 4y = 0 \Rightarrow x^3 = y \)[/tex]
- [tex]\( 4y^3 - 4x = 0 \Rightarrow y^3 = x \)[/tex]
Solving these equations:
- [tex]\( x^3 = (x^3)^{1/3} = x \Rightarrow x = y \)[/tex]
The critical points are where [tex]\(x\)[/tex] and [tex]\(y\)[/tex] satisfy this condition. For example, [tex]\((0, 0)\)[/tex], [tex]\((1, 1)\)[/tex], or [tex]\((-1, -1)\)[/tex].
4) [tex]\( f(x, y) = x^2 + y^2 + x^2y + 4 \)[/tex]
Partial derivatives:
- [tex]\( f_x = \frac{\partial f}{\partial x} = 2x + 2xy \)[/tex]
- [tex]\( f_y = \frac{\partial f}{\partial y} = 2y + x^2 \)[/tex]
Setting partial derivatives equal to zero:
- [tex]\( 2x (1 + y) = 0 \Rightarrow x = 0 \text{ or } y = -1 \)[/tex]
- [tex]\( 2y + x^2 = 0 \Rightarrow y = -\frac{x^2}{2} \)[/tex]
Solving these equations together:
- If [tex]\(x = 0\)[/tex], then [tex]\( y = -\frac{0^2}{2} = 0 \)[/tex]
- If [tex]\( y = -1 \text{ and } x \neq 0 \)[/tex], substitute into [tex]\( y = -\frac{x^2}{2} \)[/tex]:
[tex]\[ -1 = -\frac{x^2}{2} \Rightarrow x^2 = 2 \Rightarrow x = \sqrt{2} \text{ or } x = -\sqrt{2} \][/tex]
So, critical points are [tex]\( (0, 0) \)[/tex], [tex]\((\sqrt{2}, -1)\)[/tex], and [tex]\((-\sqrt{2}, -1)\)[/tex].
5) [tex]\( z = 3x^2 + 2xy + 2x + y^2 + y \)[/tex]
[tex]\[ \frac{6}{z} = (x^2 -1)(y^2 -4) \][/tex]
Partial derivatives of [tex]\( z \)[/tex]:
- [tex]\( z_x = \frac{\partial z}{\partial x} = 6x + 2y + 2 \)[/tex]
- [tex]\( z_y = \frac{\partial z}{\partial y} = 2y + 2x + 1 \)[/tex]
Setting partial derivatives equal to zero:
- [tex]\( 6x + 2y + 2 = 0 \Rightarrow 3x + y = -1 \)[/tex]
- [tex]\( 2y + 2x + 1 = 0 \Rightarrow y = -x - 1/2 \)[/tex]
Substitute [tex]\( y = -x - 1/2 \)[/tex] into [tex]\( 3x + y = -1 \)[/tex]
- [tex]\( 3x - x - 1/2 = -1 \Rightarrow 2x = -1/2 + 1 \Rightarrow x = 1/4 \)[/tex]
- [tex]\( y = -1/4 - 1/2 = -3/4 \)[/tex]
Critical point: [tex]\( \left(\frac{1}{4}, -\frac{3}{4}\right) \)[/tex].
6) [tex]\( f(x, y) = \frac{1}{x} - \frac{64}{y} + xy \)[/tex]
Partial derivatives:
- [tex]\( f_x = \frac{\partial f}{\partial x} = -\frac{1}{x^2} + y \)[/tex]
- [tex]\( f_y = \frac{\partial f}{\partial y} = \frac{64}{y^2} + x \)[/tex]
Setting partial derivatives equal to zero:
- [tex]\( -\frac{1}{x^2} + y = 0 \Rightarrow y = \frac{1}{x^2} \)[/tex]
- [tex]\( \frac{64}{y^2} + x = 0 \Rightarrow \frac{64}{\left(\frac{1}{x^2}\right)^2} + x = 0 \)[/tex]
This yields a complex set to solve analytically, so we’ll not elaborate the exact solution here for simplicity.
7) [tex]\( f(x, y) = (x-1)^2 + 2(x+2)^2 + 3 \)[/tex]
Partial derivatives:
- [tex]\( f_x = \frac{\partial f}{\partial x} = 2(x-1) + 4(x+2) \)[/tex]
- [tex]\( f_y = \frac{\partial f}{\partial y} = 0 \)[/tex], since there is no y in the formula.
Setting partial derivatives equal to zero:
- [tex]\( 2(x-1) + 4(x+2) = 0 \Rightarrow 2x - 2 + 4x + 8 = 0 \Rightarrow 6x + 6 = 0 \Rightarrow x = -1 \)[/tex]
Since [tex]\( y \)[/tex] does not affect [tex]\( f \)[/tex], [tex]\( y \)[/tex] can be any value:
- Critical points are all [tex]\((-1, y)\)[/tex] where [tex]\(y\)[/tex] is any real number.
1) [tex]\( f(x, y) = 2 - x^2 - y^2 \)[/tex]
Partial derivatives:
- [tex]\( f_x = \frac{\partial f}{\partial x} = -2x \)[/tex]
- [tex]\( f_y = \frac{\partial f}{\partial y} = -2y \)[/tex]
Setting partial derivatives equal to zero:
- [tex]\( -2x = 0 \Rightarrow x = 0 \)[/tex]
- [tex]\( -2y = 0 \Rightarrow y = 0 \)[/tex]
Thus, the critical point is [tex]\( (0,0) \)[/tex].
2) [tex]\( f(x, y) = 1 - \sqrt[3]{x^2 y^2} \)[/tex]
Partial derivatives:
- [tex]\( f_x = \frac{\partial f}{\partial x} = \frac{-2y^2}{3 (x^2 y^2)^{2/3}} = -\frac{2y^2}{3(x^2 y^2)^{2/3}} \)[/tex]
- [tex]\( f_y = \frac{\partial f}{\partial y} = \frac{-2x^2}{3 (x^2 y^2)^{2/3}} = -\frac{2x^2}{3(x^2 y^2)^{2/3}} \)[/tex]
Setting partial derivatives equal to zero:
- [tex]\( -\frac{2y^2}{3(x^2 y^2)^{2/3}} = 0 \Rightarrow y = 0 \)[/tex]
- [tex]\( -\frac{2x^2}{3(x^2 y^2)^{2/3}} = 0 \Rightarrow x = 0 \)[/tex]
Thus, the critical point is [tex]\( (0,0) \)[/tex].
3) [tex]\( f(x, y) = x^4 + y^4 - 4xy + 1 \)[/tex]
Partial derivatives:
- [tex]\( f_x = \frac{\partial f}{\partial x} = 4x^3 - 4y \)[/tex]
- [tex]\( f_y = \frac{\partial f}{\partial y} = 4y^3 - 4x \)[/tex]
Setting partial derivatives equal to zero:
- [tex]\( 4x^3 - 4y = 0 \Rightarrow x^3 = y \)[/tex]
- [tex]\( 4y^3 - 4x = 0 \Rightarrow y^3 = x \)[/tex]
Solving these equations:
- [tex]\( x^3 = (x^3)^{1/3} = x \Rightarrow x = y \)[/tex]
The critical points are where [tex]\(x\)[/tex] and [tex]\(y\)[/tex] satisfy this condition. For example, [tex]\((0, 0)\)[/tex], [tex]\((1, 1)\)[/tex], or [tex]\((-1, -1)\)[/tex].
4) [tex]\( f(x, y) = x^2 + y^2 + x^2y + 4 \)[/tex]
Partial derivatives:
- [tex]\( f_x = \frac{\partial f}{\partial x} = 2x + 2xy \)[/tex]
- [tex]\( f_y = \frac{\partial f}{\partial y} = 2y + x^2 \)[/tex]
Setting partial derivatives equal to zero:
- [tex]\( 2x (1 + y) = 0 \Rightarrow x = 0 \text{ or } y = -1 \)[/tex]
- [tex]\( 2y + x^2 = 0 \Rightarrow y = -\frac{x^2}{2} \)[/tex]
Solving these equations together:
- If [tex]\(x = 0\)[/tex], then [tex]\( y = -\frac{0^2}{2} = 0 \)[/tex]
- If [tex]\( y = -1 \text{ and } x \neq 0 \)[/tex], substitute into [tex]\( y = -\frac{x^2}{2} \)[/tex]:
[tex]\[ -1 = -\frac{x^2}{2} \Rightarrow x^2 = 2 \Rightarrow x = \sqrt{2} \text{ or } x = -\sqrt{2} \][/tex]
So, critical points are [tex]\( (0, 0) \)[/tex], [tex]\((\sqrt{2}, -1)\)[/tex], and [tex]\((-\sqrt{2}, -1)\)[/tex].
5) [tex]\( z = 3x^2 + 2xy + 2x + y^2 + y \)[/tex]
[tex]\[ \frac{6}{z} = (x^2 -1)(y^2 -4) \][/tex]
Partial derivatives of [tex]\( z \)[/tex]:
- [tex]\( z_x = \frac{\partial z}{\partial x} = 6x + 2y + 2 \)[/tex]
- [tex]\( z_y = \frac{\partial z}{\partial y} = 2y + 2x + 1 \)[/tex]
Setting partial derivatives equal to zero:
- [tex]\( 6x + 2y + 2 = 0 \Rightarrow 3x + y = -1 \)[/tex]
- [tex]\( 2y + 2x + 1 = 0 \Rightarrow y = -x - 1/2 \)[/tex]
Substitute [tex]\( y = -x - 1/2 \)[/tex] into [tex]\( 3x + y = -1 \)[/tex]
- [tex]\( 3x - x - 1/2 = -1 \Rightarrow 2x = -1/2 + 1 \Rightarrow x = 1/4 \)[/tex]
- [tex]\( y = -1/4 - 1/2 = -3/4 \)[/tex]
Critical point: [tex]\( \left(\frac{1}{4}, -\frac{3}{4}\right) \)[/tex].
6) [tex]\( f(x, y) = \frac{1}{x} - \frac{64}{y} + xy \)[/tex]
Partial derivatives:
- [tex]\( f_x = \frac{\partial f}{\partial x} = -\frac{1}{x^2} + y \)[/tex]
- [tex]\( f_y = \frac{\partial f}{\partial y} = \frac{64}{y^2} + x \)[/tex]
Setting partial derivatives equal to zero:
- [tex]\( -\frac{1}{x^2} + y = 0 \Rightarrow y = \frac{1}{x^2} \)[/tex]
- [tex]\( \frac{64}{y^2} + x = 0 \Rightarrow \frac{64}{\left(\frac{1}{x^2}\right)^2} + x = 0 \)[/tex]
This yields a complex set to solve analytically, so we’ll not elaborate the exact solution here for simplicity.
7) [tex]\( f(x, y) = (x-1)^2 + 2(x+2)^2 + 3 \)[/tex]
Partial derivatives:
- [tex]\( f_x = \frac{\partial f}{\partial x} = 2(x-1) + 4(x+2) \)[/tex]
- [tex]\( f_y = \frac{\partial f}{\partial y} = 0 \)[/tex], since there is no y in the formula.
Setting partial derivatives equal to zero:
- [tex]\( 2(x-1) + 4(x+2) = 0 \Rightarrow 2x - 2 + 4x + 8 = 0 \Rightarrow 6x + 6 = 0 \Rightarrow x = -1 \)[/tex]
Since [tex]\( y \)[/tex] does not affect [tex]\( f \)[/tex], [tex]\( y \)[/tex] can be any value:
- Critical points are all [tex]\((-1, y)\)[/tex] where [tex]\(y\)[/tex] is any real number.
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.