Get the answers you need at Westonci.ca, where our expert community is dedicated to providing you with accurate information. Get immediate and reliable solutions to your questions from a community of experienced experts on our Q&A platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
Sure! Let's solve this step-by-step:
1. Identify the given ratio: The ratio of toffee:coffee:orange:mint chocolates is given as [tex]\(5:4:2:3\)[/tex]. We will denote these values as follows:
- Toffee = 5 parts
- Coffee = 4 parts
- Orange = 2 parts
- Mint = 3 parts
2. Calculate the total ratio sum excluding hazelnut chocolates: The total number of parts without considering hazelnut chocolates is:
[tex]\[ 5 + 4 + 2 + 3 = 14 \text{ parts} \][/tex]
3. Include the hazelnut chocolates: According to the problem, we should include hazelnut chocolates which will be 1 additional part. Therefore, the total number of parts becomes:
[tex]\[ 14 + 1 = 15 \text{ total parts} \][/tex]
4. Determine the total number of chocolates in the box: We are told that the probability of picking a hazelnut chocolate is [tex]\(\frac{1}{8}\)[/tex]. This means that out of every 8 chocolates, 1 is hazelnut. Therefore, the number of total chocolates can be determined by multiplying the total parts by 8:
[tex]\[ 15 \times 8 = 120 \text{ chocolates} \][/tex]
5. Calculate the number of hazelnut chocolates: Given the probability of [tex]\(\frac{1}{8}\)[/tex] for hazelnut chocolates, we can now find the number of hazelnut chocolates by dividing the total number of chocolates by 8:
[tex]\[ \frac{120}{8} = 15 \text{ hazelnut chocolates} \][/tex]
So, there are [tex]\(15\)[/tex] hazelnut chocolates in the box.
1. Identify the given ratio: The ratio of toffee:coffee:orange:mint chocolates is given as [tex]\(5:4:2:3\)[/tex]. We will denote these values as follows:
- Toffee = 5 parts
- Coffee = 4 parts
- Orange = 2 parts
- Mint = 3 parts
2. Calculate the total ratio sum excluding hazelnut chocolates: The total number of parts without considering hazelnut chocolates is:
[tex]\[ 5 + 4 + 2 + 3 = 14 \text{ parts} \][/tex]
3. Include the hazelnut chocolates: According to the problem, we should include hazelnut chocolates which will be 1 additional part. Therefore, the total number of parts becomes:
[tex]\[ 14 + 1 = 15 \text{ total parts} \][/tex]
4. Determine the total number of chocolates in the box: We are told that the probability of picking a hazelnut chocolate is [tex]\(\frac{1}{8}\)[/tex]. This means that out of every 8 chocolates, 1 is hazelnut. Therefore, the number of total chocolates can be determined by multiplying the total parts by 8:
[tex]\[ 15 \times 8 = 120 \text{ chocolates} \][/tex]
5. Calculate the number of hazelnut chocolates: Given the probability of [tex]\(\frac{1}{8}\)[/tex] for hazelnut chocolates, we can now find the number of hazelnut chocolates by dividing the total number of chocolates by 8:
[tex]\[ \frac{120}{8} = 15 \text{ hazelnut chocolates} \][/tex]
So, there are [tex]\(15\)[/tex] hazelnut chocolates in the box.
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.