Explore Westonci.ca, the top Q&A platform where your questions are answered by professionals and enthusiasts alike. Get immediate and reliable answers to your questions from a community of experienced experts on our platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To solve the quadratic equation [tex]\( x^2 - 8x - 9 = 0 \)[/tex], we need to find the roots of the equation. This can be done using the quadratic formula, which is given by:
[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
where [tex]\( a \)[/tex], [tex]\( b \)[/tex], and [tex]\( c \)[/tex] are the coefficients of the equation [tex]\( ax^2 + bx + c = 0 \)[/tex].
For the given quadratic equation [tex]\( x^2 - 8x - 9 = 0 \)[/tex]:
- [tex]\( a = 1 \)[/tex]
- [tex]\( b = -8 \)[/tex]
- [tex]\( c = -9 \)[/tex]
Next, we calculate the discriminant, which is [tex]\( b^2 - 4ac \)[/tex]:
[tex]\[ \text{Discriminant} = (-8)^2 - 4 \cdot 1 \cdot (-9) = 64 + 36 = 100 \][/tex]
The discriminant is positive, which means the quadratic equation has two distinct real roots.
Now, we can find the roots using the quadratic formula:
[tex]\[ x_1 = \frac{-(-8) + \sqrt{100}}{2 \cdot 1} = \frac{8 + 10}{2} = \frac{18}{2} = 9 \][/tex]
[tex]\[ x_2 = \frac{-(-8) - \sqrt{100}}{2 \cdot 1} = \frac{8 - 10}{2} = \frac{-2}{2} = -1 \][/tex]
Therefore, the solutions to the quadratic equation [tex]\( x^2 - 8x - 9 = 0 \)[/tex] are:
[tex]\[ x = 9 \quad \text{and} \quad x = -1 \][/tex]
Among the given options, the correct solutions are:
- [tex]\( -1 \)[/tex]
- [tex]\( 9 \)[/tex]
[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
where [tex]\( a \)[/tex], [tex]\( b \)[/tex], and [tex]\( c \)[/tex] are the coefficients of the equation [tex]\( ax^2 + bx + c = 0 \)[/tex].
For the given quadratic equation [tex]\( x^2 - 8x - 9 = 0 \)[/tex]:
- [tex]\( a = 1 \)[/tex]
- [tex]\( b = -8 \)[/tex]
- [tex]\( c = -9 \)[/tex]
Next, we calculate the discriminant, which is [tex]\( b^2 - 4ac \)[/tex]:
[tex]\[ \text{Discriminant} = (-8)^2 - 4 \cdot 1 \cdot (-9) = 64 + 36 = 100 \][/tex]
The discriminant is positive, which means the quadratic equation has two distinct real roots.
Now, we can find the roots using the quadratic formula:
[tex]\[ x_1 = \frac{-(-8) + \sqrt{100}}{2 \cdot 1} = \frac{8 + 10}{2} = \frac{18}{2} = 9 \][/tex]
[tex]\[ x_2 = \frac{-(-8) - \sqrt{100}}{2 \cdot 1} = \frac{8 - 10}{2} = \frac{-2}{2} = -1 \][/tex]
Therefore, the solutions to the quadratic equation [tex]\( x^2 - 8x - 9 = 0 \)[/tex] are:
[tex]\[ x = 9 \quad \text{and} \quad x = -1 \][/tex]
Among the given options, the correct solutions are:
- [tex]\( -1 \)[/tex]
- [tex]\( 9 \)[/tex]
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.