Welcome to Westonci.ca, your go-to destination for finding answers to all your questions. Join our expert community today! Explore our Q&A platform to find in-depth answers from a wide range of experts in different fields. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To solve this problem, we need to examine the given equation and interpret what it represents. The equation given is:
[tex]\[ y = 11x + 25 \][/tex]
where [tex]\( y \)[/tex] is the total cost in dollars for printing [tex]\( x \)[/tex] custom t-shirts.
1. Understand the equation components:
- The slope (coefficient of [tex]\( x \)[/tex]) is [tex]\( 11 \)[/tex]. This means that for each additional t-shirt printed, the cost increases by [tex]\( 11 \)[/tex] dollars.
- The constant term [tex]\( 25 \)[/tex] is the fixed cost, which does not change regardless of the number of t-shirts printed.
2. Break down the impact of adding an additional t-shirt:
- The term [tex]\( 11x \)[/tex] indicates that every additional t-shirt adds [tex]\( 11 \)[/tex] dollars to the total cost.
- [tex]\( 25 \)[/tex] is a fixed cost that covers the initial setup or other fixed expenses and remains constant irrespective of how many t-shirts are printed.
From the structure of the equation [tex]\( y = 11x + 25 \)[/tex], it is clear the variable part, which is [tex]\( 11x \)[/tex], determines how the total cost changes with the number of t-shirts added.
3. Evaluate the statements:
- Statement A: "Each additional t-shirt being printed will increase the total cost by [tex]\( 11\% \)[/tex]". This statement is incorrect because the increase is a fixed amount, not a percentage.
- Statement B: "Each additional t-shirt being printed will increase the total cost by [tex]\( 25 \)[/tex] dollars". This is incorrect as the 25 dollars is a fixed initial cost, not the cost per additional t-shirt.
- Statement C: "Each additional t-shirt being printed will increase the total cost by [tex]\( 11 \)[/tex] dollars". This is correct as represented by the coefficient [tex]\( 11 \)[/tex] in the equation.
- Statement D: "Each additional t-shirt being printed will increase the total cost by [tex]\( 25\% \)[/tex]". This is incorrect as the percentage mentioned does not reflect the fixed increase per t-shirt, which is [tex]\( 11 \)[/tex] dollars.
Therefore, the correct statement is:
[tex]\[ \boxed{\text{C}} \][/tex]
[tex]\[ y = 11x + 25 \][/tex]
where [tex]\( y \)[/tex] is the total cost in dollars for printing [tex]\( x \)[/tex] custom t-shirts.
1. Understand the equation components:
- The slope (coefficient of [tex]\( x \)[/tex]) is [tex]\( 11 \)[/tex]. This means that for each additional t-shirt printed, the cost increases by [tex]\( 11 \)[/tex] dollars.
- The constant term [tex]\( 25 \)[/tex] is the fixed cost, which does not change regardless of the number of t-shirts printed.
2. Break down the impact of adding an additional t-shirt:
- The term [tex]\( 11x \)[/tex] indicates that every additional t-shirt adds [tex]\( 11 \)[/tex] dollars to the total cost.
- [tex]\( 25 \)[/tex] is a fixed cost that covers the initial setup or other fixed expenses and remains constant irrespective of how many t-shirts are printed.
From the structure of the equation [tex]\( y = 11x + 25 \)[/tex], it is clear the variable part, which is [tex]\( 11x \)[/tex], determines how the total cost changes with the number of t-shirts added.
3. Evaluate the statements:
- Statement A: "Each additional t-shirt being printed will increase the total cost by [tex]\( 11\% \)[/tex]". This statement is incorrect because the increase is a fixed amount, not a percentage.
- Statement B: "Each additional t-shirt being printed will increase the total cost by [tex]\( 25 \)[/tex] dollars". This is incorrect as the 25 dollars is a fixed initial cost, not the cost per additional t-shirt.
- Statement C: "Each additional t-shirt being printed will increase the total cost by [tex]\( 11 \)[/tex] dollars". This is correct as represented by the coefficient [tex]\( 11 \)[/tex] in the equation.
- Statement D: "Each additional t-shirt being printed will increase the total cost by [tex]\( 25\% \)[/tex]". This is incorrect as the percentage mentioned does not reflect the fixed increase per t-shirt, which is [tex]\( 11 \)[/tex] dollars.
Therefore, the correct statement is:
[tex]\[ \boxed{\text{C}} \][/tex]
We hope this was helpful. Please come back whenever you need more information or answers to your queries. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.