Discover the best answers at Westonci.ca, where experts share their insights and knowledge with you. Our platform provides a seamless experience for finding reliable answers from a knowledgeable network of professionals. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To convert the given equation of the circle [tex]\( x^2 + 4x + y^2 - 10y + 13 = 0 \)[/tex] to its standard form, we need to complete the square for both the [tex]\( x \)[/tex] and [tex]\( y \)[/tex] terms.
1. Completing the square for the [tex]\( x \)[/tex] terms:
The expression [tex]\( x^2 + 4x \)[/tex] can be transformed by completing the square.
- Take the coefficient of [tex]\( x \)[/tex], which is 4.
- Divide it by 2 to get 2, and then square it to get 4.
- So, [tex]\( x^2 + 4x \)[/tex] can be rewritten as [tex]\( (x + 2)^2 - 4 \)[/tex].
2. Completing the square for the [tex]\( y \)[/tex] terms:
The expression [tex]\( y^2 - 10y \)[/tex] can also be transformed by completing the square.
- Take the coefficient of [tex]\( y \)[/tex], which is -10.
- Divide it by 2 to get -5, and then square it to get 25.
- Thus, [tex]\( y^2 - 10y \)[/tex] can be rewritten as [tex]\( (y - 5)^2 - 25 \)[/tex].
3. Rewriting the original equation:
Substitute these completed squares back into the original equation:
[tex]\[ x^2 + 4x + y^2 - 10y + 13 = 0 \][/tex]
becomes:
[tex]\[ (x + 2)^2 - 4 + (y - 5)^2 - 25 + 13 = 0 \][/tex]
4. Combining constants:
Simplify the constants on the left side:
[tex]\[ (x + 2)^2 + (y - 5)^2 - 16 = 0 \][/tex]
Add 16 to both sides to isolate the squared terms:
[tex]\[ (x + 2)^2 + (y - 5)^2 = 16 \][/tex]
Thus, the standard form of the equation of the circle is:
[tex]\[ (x + 2)^2 + (y - 5)^2 = 16 \][/tex]
Therefore, the correct option is:
[tex]\((x+2)^2+(y-5)^2=16\)[/tex]
The correct answer is:
[tex]\[ \boxed{(x+2)^2+(y-5)^2=16} \][/tex]
1. Completing the square for the [tex]\( x \)[/tex] terms:
The expression [tex]\( x^2 + 4x \)[/tex] can be transformed by completing the square.
- Take the coefficient of [tex]\( x \)[/tex], which is 4.
- Divide it by 2 to get 2, and then square it to get 4.
- So, [tex]\( x^2 + 4x \)[/tex] can be rewritten as [tex]\( (x + 2)^2 - 4 \)[/tex].
2. Completing the square for the [tex]\( y \)[/tex] terms:
The expression [tex]\( y^2 - 10y \)[/tex] can also be transformed by completing the square.
- Take the coefficient of [tex]\( y \)[/tex], which is -10.
- Divide it by 2 to get -5, and then square it to get 25.
- Thus, [tex]\( y^2 - 10y \)[/tex] can be rewritten as [tex]\( (y - 5)^2 - 25 \)[/tex].
3. Rewriting the original equation:
Substitute these completed squares back into the original equation:
[tex]\[ x^2 + 4x + y^2 - 10y + 13 = 0 \][/tex]
becomes:
[tex]\[ (x + 2)^2 - 4 + (y - 5)^2 - 25 + 13 = 0 \][/tex]
4. Combining constants:
Simplify the constants on the left side:
[tex]\[ (x + 2)^2 + (y - 5)^2 - 16 = 0 \][/tex]
Add 16 to both sides to isolate the squared terms:
[tex]\[ (x + 2)^2 + (y - 5)^2 = 16 \][/tex]
Thus, the standard form of the equation of the circle is:
[tex]\[ (x + 2)^2 + (y - 5)^2 = 16 \][/tex]
Therefore, the correct option is:
[tex]\((x+2)^2+(y-5)^2=16\)[/tex]
The correct answer is:
[tex]\[ \boxed{(x+2)^2+(y-5)^2=16} \][/tex]
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.