Westonci.ca connects you with experts who provide insightful answers to your questions. Join us today and start learning! Experience the convenience of getting reliable answers to your questions from a vast network of knowledgeable experts. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To determine whether each equation represents a proportional relationship, we need to understand what a proportional relationship means. A proportional relationship between two variables [tex]\( x \)[/tex] and [tex]\( y \)[/tex] can be described by an equation of the form [tex]\( y = kx \)[/tex], where [tex]\( k \)[/tex] is a constant.
Let's analyze each equation to see if it fits this form:
1. Equation: [tex]\( y = 3 + x \)[/tex]
- This equation can be rewritten as [tex]\( y = x + 3 \)[/tex], which is not in the form [tex]\( y = kx \)[/tex] because of the additional constant 3.
- Conclusion: Not a Proportional Relationship
2. Equation: [tex]\( y = 1.6x \)[/tex]
- This equation is already in the form [tex]\( y = kx \)[/tex], with [tex]\( k = 1.6 \)[/tex].
- Conclusion: Proportional Relationship
3. Equation: [tex]\( y = \frac{3}{4x} \)[/tex]
- This equation can be written as [tex]\( y = \frac{3}{4} \cdot \frac{1}{x} \)[/tex], which is not in the form [tex]\( y = kx \)[/tex] because of the division by [tex]\( x \)[/tex].
- Conclusion: Not a Proportional Relationship
4. Equation: [tex]\( y = x \)[/tex]
- This equation is already in the form [tex]\( y = kx \)[/tex], with [tex]\( k = 1 \)[/tex].
- Conclusion: Proportional Relationship
5. Equation: [tex]\( y = 12x \)[/tex]
- This equation is already in the form [tex]\( y = kx \)[/tex], with [tex]\( k = 12 \)[/tex].
- Conclusion: Proportional Relationship
6. Equation: [tex]\( y = 2x + 1 \)[/tex]
- This equation can be rewritten as [tex]\( y = 2x + 1 \)[/tex], which is not in the form [tex]\( y = kx \)[/tex] because of the additional constant 1.
- Conclusion: Not a Proportional Relationship
Summarizing, we have:
- [tex]\( y = 3 + x \)[/tex]: Not a Proportional Relationship
- [tex]\( y = 1.6x \)[/tex]: Proportional Relationship
- [tex]\( y = \frac{3}{4x} \)[/tex]: Not a Proportional Relationship
- [tex]\( y = x \)[/tex]: Proportional Relationship
- [tex]\( y = 12x \)[/tex]: Proportional Relationship
- [tex]\( y = 2x + 1 \)[/tex]: Not a Proportional Relationship
Let's analyze each equation to see if it fits this form:
1. Equation: [tex]\( y = 3 + x \)[/tex]
- This equation can be rewritten as [tex]\( y = x + 3 \)[/tex], which is not in the form [tex]\( y = kx \)[/tex] because of the additional constant 3.
- Conclusion: Not a Proportional Relationship
2. Equation: [tex]\( y = 1.6x \)[/tex]
- This equation is already in the form [tex]\( y = kx \)[/tex], with [tex]\( k = 1.6 \)[/tex].
- Conclusion: Proportional Relationship
3. Equation: [tex]\( y = \frac{3}{4x} \)[/tex]
- This equation can be written as [tex]\( y = \frac{3}{4} \cdot \frac{1}{x} \)[/tex], which is not in the form [tex]\( y = kx \)[/tex] because of the division by [tex]\( x \)[/tex].
- Conclusion: Not a Proportional Relationship
4. Equation: [tex]\( y = x \)[/tex]
- This equation is already in the form [tex]\( y = kx \)[/tex], with [tex]\( k = 1 \)[/tex].
- Conclusion: Proportional Relationship
5. Equation: [tex]\( y = 12x \)[/tex]
- This equation is already in the form [tex]\( y = kx \)[/tex], with [tex]\( k = 12 \)[/tex].
- Conclusion: Proportional Relationship
6. Equation: [tex]\( y = 2x + 1 \)[/tex]
- This equation can be rewritten as [tex]\( y = 2x + 1 \)[/tex], which is not in the form [tex]\( y = kx \)[/tex] because of the additional constant 1.
- Conclusion: Not a Proportional Relationship
Summarizing, we have:
- [tex]\( y = 3 + x \)[/tex]: Not a Proportional Relationship
- [tex]\( y = 1.6x \)[/tex]: Proportional Relationship
- [tex]\( y = \frac{3}{4x} \)[/tex]: Not a Proportional Relationship
- [tex]\( y = x \)[/tex]: Proportional Relationship
- [tex]\( y = 12x \)[/tex]: Proportional Relationship
- [tex]\( y = 2x + 1 \)[/tex]: Not a Proportional Relationship
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.