Welcome to Westonci.ca, where curiosity meets expertise. Ask any question and receive fast, accurate answers from our knowledgeable community. Find reliable answers to your questions from a wide community of knowledgeable experts on our user-friendly Q&A platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To solve the system of linear equations
[tex]\[ \begin{cases} x + 2y - 3 = 0 \\ 5x + 10y + 1 = 0 \end{cases} \][/tex]
we need to find the values of [tex]\( x \)[/tex] and [tex]\( y \)[/tex] that satisfy both equations simultaneously. Let's proceed step by step:
1. Simplify the Equations:
Start by isolating [tex]\( x \)[/tex] in the first equation:
[tex]\[ x + 2y - 3 = 0 \implies x = 3 - 2y \][/tex]
2. Substitute [tex]\( x \)[/tex] into the Second Equation:
Substitute [tex]\( x = 3 - 2y \)[/tex] into the second equation:
[tex]\[ 5(3 - 2y) + 10y + 1 = 0 \][/tex]
3. Simplify the Second Equation:
Simplifying [tex]\( 5(3 - 2y) + 10y + 1 \)[/tex]:
[tex]\[ 15 - 10y + 10y + 1 = 0 \][/tex]
[tex]\[ 15 + 1 = 0 \][/tex]
[tex]\[ 16 = 0 \][/tex]
4. Analyze the Result:
The simplification leads to the equation [tex]\( 16 = 0 \)[/tex], which is a contradiction. We obtained a false statement indicating that the system of equations has no solution.
Hence, the system of equations:
[tex]\[ \begin{cases} x + 2y - 3 = 0 \\ 5x + 10y + 1 = 0 \end{cases} \][/tex]
has no solution. The equations are inconsistent.
[tex]\[ \begin{cases} x + 2y - 3 = 0 \\ 5x + 10y + 1 = 0 \end{cases} \][/tex]
we need to find the values of [tex]\( x \)[/tex] and [tex]\( y \)[/tex] that satisfy both equations simultaneously. Let's proceed step by step:
1. Simplify the Equations:
Start by isolating [tex]\( x \)[/tex] in the first equation:
[tex]\[ x + 2y - 3 = 0 \implies x = 3 - 2y \][/tex]
2. Substitute [tex]\( x \)[/tex] into the Second Equation:
Substitute [tex]\( x = 3 - 2y \)[/tex] into the second equation:
[tex]\[ 5(3 - 2y) + 10y + 1 = 0 \][/tex]
3. Simplify the Second Equation:
Simplifying [tex]\( 5(3 - 2y) + 10y + 1 \)[/tex]:
[tex]\[ 15 - 10y + 10y + 1 = 0 \][/tex]
[tex]\[ 15 + 1 = 0 \][/tex]
[tex]\[ 16 = 0 \][/tex]
4. Analyze the Result:
The simplification leads to the equation [tex]\( 16 = 0 \)[/tex], which is a contradiction. We obtained a false statement indicating that the system of equations has no solution.
Hence, the system of equations:
[tex]\[ \begin{cases} x + 2y - 3 = 0 \\ 5x + 10y + 1 = 0 \end{cases} \][/tex]
has no solution. The equations are inconsistent.
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.