Looking for trustworthy answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Get immediate and reliable answers to your questions from a community of experienced professionals on our platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To simplify the given expression [tex]\(\left(5 x y^5\right)^2\left(y^3\right)^4\)[/tex], we can follow these steps:
1. Simplify [tex]\(\left(5 x y^5\right)^2\)[/tex]:
Raise [tex]\(5 x y^5\)[/tex] to the power of 2. This means we need to square each of the factors inside the parentheses.
[tex]\[ \left(5 x y^5\right)^2 = (5)^2 \cdot (x)^2 \cdot (y^5)^2 \][/tex]
Calculate each part separately:
[tex]\[ (5)^2 = 25 \][/tex]
[tex]\[ (x)^2 = x^2 \][/tex]
[tex]\[ (y^5)^2 = y^{5 \cdot 2} = y^{10} \][/tex]
Combine these results:
[tex]\[ \left(5 x y^5\right)^2 = 25 x^2 y^{10} \][/tex]
2. Simplify [tex]\(\left(y^3\right)^4\)[/tex]:
Raise [tex]\(y^3\)[/tex] to the power of 4. Multiply the exponent inside the parentheses by the exponent outside.
[tex]\[ \left(y^3\right)^4 = y^{3 \cdot 4} = y^{12} \][/tex]
3. Multiply the simplified parts:
Combine the simplified expressions [tex]\(\left(5 x y^5\right)^2 = 25 x^2 y^{10}\)[/tex] and [tex]\(\left(y^3\right)^4 = y^{12}\)[/tex].
[tex]\[ 25 x^2 y^{10} \cdot y^{12} \][/tex]
Since the bases of the [tex]\(y\)[/tex] terms are the same, we add the exponents:
[tex]\[ 25 x^2 y^{10 + 12} = 25 x^2 y^{22} \][/tex]
Therefore, the correct simplification of the expression [tex]\(\left(5 x y^5\right)^2\left(y^3\right)^4\)[/tex] is:
[tex]\[ \boxed{25 x^2 y^{22}} \][/tex]
1. Simplify [tex]\(\left(5 x y^5\right)^2\)[/tex]:
Raise [tex]\(5 x y^5\)[/tex] to the power of 2. This means we need to square each of the factors inside the parentheses.
[tex]\[ \left(5 x y^5\right)^2 = (5)^2 \cdot (x)^2 \cdot (y^5)^2 \][/tex]
Calculate each part separately:
[tex]\[ (5)^2 = 25 \][/tex]
[tex]\[ (x)^2 = x^2 \][/tex]
[tex]\[ (y^5)^2 = y^{5 \cdot 2} = y^{10} \][/tex]
Combine these results:
[tex]\[ \left(5 x y^5\right)^2 = 25 x^2 y^{10} \][/tex]
2. Simplify [tex]\(\left(y^3\right)^4\)[/tex]:
Raise [tex]\(y^3\)[/tex] to the power of 4. Multiply the exponent inside the parentheses by the exponent outside.
[tex]\[ \left(y^3\right)^4 = y^{3 \cdot 4} = y^{12} \][/tex]
3. Multiply the simplified parts:
Combine the simplified expressions [tex]\(\left(5 x y^5\right)^2 = 25 x^2 y^{10}\)[/tex] and [tex]\(\left(y^3\right)^4 = y^{12}\)[/tex].
[tex]\[ 25 x^2 y^{10} \cdot y^{12} \][/tex]
Since the bases of the [tex]\(y\)[/tex] terms are the same, we add the exponents:
[tex]\[ 25 x^2 y^{10 + 12} = 25 x^2 y^{22} \][/tex]
Therefore, the correct simplification of the expression [tex]\(\left(5 x y^5\right)^2\left(y^3\right)^4\)[/tex] is:
[tex]\[ \boxed{25 x^2 y^{22}} \][/tex]
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.