Find the information you're looking for at Westonci.ca, the trusted Q&A platform with a community of knowledgeable experts. Ask your questions and receive precise answers from experienced professionals across different disciplines. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To solve the given equation[tex]\(\ tan(Q) = 0.7 \ \)[/tex] for [tex]\( \ 0^\circ \leq Q \leq 180^\circ \)[/tex]:
### Step-by-Step Solution:
1. Identify the range and properties of the tangent function:
- Given: [tex]\(\ tan(Q) = 0.7 \)[/tex]
- We need to find all angles [tex]\( Q \)[/tex] such that [tex]\( 0^\circ \leq Q \leq 180^\circ \)[/tex].
- The tangent function [tex]\( \ tan(Q) \)[/tex] is positive in the first and third quadrants, but for our range [tex]\(0^\circ\)[/tex] to [tex]\(180^\circ\)[/tex], we will consider the first and second quadrants.
2. Find the Principal Value:
- Use an inverse tangent function to determine the principal value [tex]\( Q \)[/tex].
- [tex]\( Q = \ tan^{-1}(0.7) \)[/tex] gives us one solution. We convert this to degrees.
Using calculations, we get:
[tex]\[ Q \approx 34.99202019855866^\circ \][/tex]
3. Determine the Solutions within the Given Range:
- In the first quadrant (where tangent is positive), the principal value [tex]\( 34.99202019855866^\circ \)[/tex] is one solution.
- In the second quadrant, the tangent of an angle still results in a positive value. To find the second angle, subtract the principal value from [tex]\( 180^\circ \)[/tex]:
[tex]\[ Q_{\text{second quadrant}} = 180^\circ - 34.99202019855866^\circ = 145.00797980144134^\circ \][/tex]
4. Conclusion:
- The solutions to the equation [tex]\(\ tan(Q) = 0.7 \)[/tex] in the interval [tex]\( 0^\circ \leq Q \leq 180^\circ \)[/tex] are:
[tex]\[ Q \approx 34.99202019855866^\circ \quad \text{and} \quad Q \approx 145.00797980144134^\circ \][/tex]
Therefore, the angles [tex]\( Q \)[/tex] satisfying the given equation within the specified range are approximately [tex]\( 34.99202019855866^\circ \)[/tex] and [tex]\( 145.00797980144134^\circ \)[/tex].
### Step-by-Step Solution:
1. Identify the range and properties of the tangent function:
- Given: [tex]\(\ tan(Q) = 0.7 \)[/tex]
- We need to find all angles [tex]\( Q \)[/tex] such that [tex]\( 0^\circ \leq Q \leq 180^\circ \)[/tex].
- The tangent function [tex]\( \ tan(Q) \)[/tex] is positive in the first and third quadrants, but for our range [tex]\(0^\circ\)[/tex] to [tex]\(180^\circ\)[/tex], we will consider the first and second quadrants.
2. Find the Principal Value:
- Use an inverse tangent function to determine the principal value [tex]\( Q \)[/tex].
- [tex]\( Q = \ tan^{-1}(0.7) \)[/tex] gives us one solution. We convert this to degrees.
Using calculations, we get:
[tex]\[ Q \approx 34.99202019855866^\circ \][/tex]
3. Determine the Solutions within the Given Range:
- In the first quadrant (where tangent is positive), the principal value [tex]\( 34.99202019855866^\circ \)[/tex] is one solution.
- In the second quadrant, the tangent of an angle still results in a positive value. To find the second angle, subtract the principal value from [tex]\( 180^\circ \)[/tex]:
[tex]\[ Q_{\text{second quadrant}} = 180^\circ - 34.99202019855866^\circ = 145.00797980144134^\circ \][/tex]
4. Conclusion:
- The solutions to the equation [tex]\(\ tan(Q) = 0.7 \)[/tex] in the interval [tex]\( 0^\circ \leq Q \leq 180^\circ \)[/tex] are:
[tex]\[ Q \approx 34.99202019855866^\circ \quad \text{and} \quad Q \approx 145.00797980144134^\circ \][/tex]
Therefore, the angles [tex]\( Q \)[/tex] satisfying the given equation within the specified range are approximately [tex]\( 34.99202019855866^\circ \)[/tex] and [tex]\( 145.00797980144134^\circ \)[/tex].
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.