Find the information you're looking for at Westonci.ca, the trusted Q&A platform with a community of knowledgeable experts. Discover comprehensive answers to your questions from knowledgeable professionals on our user-friendly platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To find out how long the swing is using the pendulum formula, we start with the given formula:
[tex]\[ T = 2 \pi \sqrt{\frac{L}{32}} \][/tex]
Given:
- [tex]\( T \)[/tex] (the period) is 3.1 seconds.
- The acceleration due to gravity [tex]\( g \)[/tex] is 32 ft/s[tex]\(^2\)[/tex].
The formula needs to be rearranged to solve for [tex]\( L \)[/tex]:
[tex]\[ T = 2 \pi \sqrt{\frac{L}{32}} \][/tex]
First, isolate [tex]\( \sqrt{\frac{L}{32}} \)[/tex] on one side by dividing both sides by [tex]\( 2 \pi \)[/tex]:
[tex]\[ \frac{T}{2 \pi} = \sqrt{\frac{L}{32}} \][/tex]
Next, square both sides to eliminate the square root:
[tex]\[ \left(\frac{T}{2 \pi}\right)^2 = \frac{L}{32} \][/tex]
Then, multiply both sides by 32 to solve for [tex]\( L \)[/tex]:
[tex]\[ L = 32 \left(\frac{T}{2 \pi}\right)^2 \][/tex]
Substitute [tex]\( T = 3.1 \)[/tex]:
[tex]\[ L = 32 \left(\frac{3.1}{2 \pi}\right)^2 \][/tex]
Calculate the value inside the parentheses first:
[tex]\[ \frac{3.1}{2 \pi} \approx 0.493 \][/tex]
Then, square this value:
[tex]\[ (0.493)^2 \approx 0.243 \][/tex]
Finally, multiply by 32:
[tex]\[ L = 32 \times 0.243 \approx 7.78957259842293 \][/tex]
Rounding 7.78957259842293 to the tenths place:
[tex]\[ L \approx 7.8 \][/tex]
Therefore, the length of the swing is approximately:
[tex]\[ \boxed{7.8 \text{ feet}} \][/tex]
So, the correct choice is:
B. 7.8 feet
[tex]\[ T = 2 \pi \sqrt{\frac{L}{32}} \][/tex]
Given:
- [tex]\( T \)[/tex] (the period) is 3.1 seconds.
- The acceleration due to gravity [tex]\( g \)[/tex] is 32 ft/s[tex]\(^2\)[/tex].
The formula needs to be rearranged to solve for [tex]\( L \)[/tex]:
[tex]\[ T = 2 \pi \sqrt{\frac{L}{32}} \][/tex]
First, isolate [tex]\( \sqrt{\frac{L}{32}} \)[/tex] on one side by dividing both sides by [tex]\( 2 \pi \)[/tex]:
[tex]\[ \frac{T}{2 \pi} = \sqrt{\frac{L}{32}} \][/tex]
Next, square both sides to eliminate the square root:
[tex]\[ \left(\frac{T}{2 \pi}\right)^2 = \frac{L}{32} \][/tex]
Then, multiply both sides by 32 to solve for [tex]\( L \)[/tex]:
[tex]\[ L = 32 \left(\frac{T}{2 \pi}\right)^2 \][/tex]
Substitute [tex]\( T = 3.1 \)[/tex]:
[tex]\[ L = 32 \left(\frac{3.1}{2 \pi}\right)^2 \][/tex]
Calculate the value inside the parentheses first:
[tex]\[ \frac{3.1}{2 \pi} \approx 0.493 \][/tex]
Then, square this value:
[tex]\[ (0.493)^2 \approx 0.243 \][/tex]
Finally, multiply by 32:
[tex]\[ L = 32 \times 0.243 \approx 7.78957259842293 \][/tex]
Rounding 7.78957259842293 to the tenths place:
[tex]\[ L \approx 7.8 \][/tex]
Therefore, the length of the swing is approximately:
[tex]\[ \boxed{7.8 \text{ feet}} \][/tex]
So, the correct choice is:
B. 7.8 feet
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.