Looking for trustworthy answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Get the answers you need quickly and accurately from a dedicated community of experts on our Q&A platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To determine the step where Marta incorrectly applied a property of logarithms, let's analyze the given steps in simplifying the expression [tex]\( 4 \log _5 x + \log _5 2 x - \log _5 3 x \)[/tex].
The given steps are:
1. [tex]\( 4 \log _5 x + \log _5 2 x - \log _5 3 x \)[/tex]
2. Step 1: [tex]\( = \log _5 4 x + \log _5 2 x - \log _5 3 x \)[/tex]
3. Step 2: [tex]\( = \log _5 8 x^2 - \log _5 3 x \)[/tex]
4. Step 3: [tex]\( = \log _5 \left( \frac{8 x^2}{3 x} \right) \)[/tex]
5. Step 4: [tex]\( = \log _5 \left( \frac{8}{3} x \right) \)[/tex]
Let's go through each step to find the mistake:
Step 1: [tex]\( 4 \log _5 x \)[/tex] is a term in the expression.
Originally:
[tex]\[ 4 \log _5 x + \log _5 2 x - \log _5 3 x \][/tex]
Marta wrote in Step 1:
[tex]\[ \log _5 4 x + \log _5 2 x - \log _5 3 x \][/tex]
Let's compare Step 1 with the original expression:
- [tex]\(4 \log _5 x \)[/tex] should be left as [tex]\(4 \log _5 x \)[/tex] (since multiplying within the logarithm is incorrect here)
The mistake is in Step 1, where Marta turned [tex]\( 4 \log _5 x \)[/tex] into [tex]\( \log _5 4 x \)[/tex], which is incorrect. The correct simplification should have maintained the term [tex]\( 4 \log _5 x \)[/tex].
Thus, the incorrect application of a logarithm property is at Step 1.
The given steps are:
1. [tex]\( 4 \log _5 x + \log _5 2 x - \log _5 3 x \)[/tex]
2. Step 1: [tex]\( = \log _5 4 x + \log _5 2 x - \log _5 3 x \)[/tex]
3. Step 2: [tex]\( = \log _5 8 x^2 - \log _5 3 x \)[/tex]
4. Step 3: [tex]\( = \log _5 \left( \frac{8 x^2}{3 x} \right) \)[/tex]
5. Step 4: [tex]\( = \log _5 \left( \frac{8}{3} x \right) \)[/tex]
Let's go through each step to find the mistake:
Step 1: [tex]\( 4 \log _5 x \)[/tex] is a term in the expression.
Originally:
[tex]\[ 4 \log _5 x + \log _5 2 x - \log _5 3 x \][/tex]
Marta wrote in Step 1:
[tex]\[ \log _5 4 x + \log _5 2 x - \log _5 3 x \][/tex]
Let's compare Step 1 with the original expression:
- [tex]\(4 \log _5 x \)[/tex] should be left as [tex]\(4 \log _5 x \)[/tex] (since multiplying within the logarithm is incorrect here)
The mistake is in Step 1, where Marta turned [tex]\( 4 \log _5 x \)[/tex] into [tex]\( \log _5 4 x \)[/tex], which is incorrect. The correct simplification should have maintained the term [tex]\( 4 \log _5 x \)[/tex].
Thus, the incorrect application of a logarithm property is at Step 1.
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.