Get the answers you need at Westonci.ca, where our expert community is always ready to help with accurate information. Connect with a community of experts ready to help you find solutions to your questions quickly and accurately. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
Certainly! Let's solve this problem step-by-step using the principles of physics, specifically the equations of motion under gravity.
Given:
- The height ([tex]\(h\)[/tex]) from which the object is dropped is [tex]\(1000\)[/tex] feet.
- The acceleration due to gravity ([tex]\(g\)[/tex]) is [tex]\(32.2 \, \text{ft/s}^2\)[/tex].
We will use the kinematic equation for objects in free fall:
[tex]\[ v^2 = u^2 + 2gh \][/tex]
Here:
- [tex]\(v\)[/tex] is the final velocity of the object.
- [tex]\(u\)[/tex] is the initial velocity (which is [tex]\(0\)[/tex] since the object is dropped).
- [tex]\(g\)[/tex] is the acceleration due to gravity.
- [tex]\(h\)[/tex] is the height from which the object is dropped.
Since the object is dropped from rest:
[tex]\[ u = 0 \][/tex]
Substituting this into the equation, we get:
[tex]\[ v^2 = 0^2 + 2gh \][/tex]
[tex]\[ v^2 = 2gh \][/tex]
Now, let's plug in the given values:
[tex]\[ v^2 = 2 \cdot 32.2 \cdot 1000 \][/tex]
So:
[tex]\[ v^2 = 64400 \][/tex]
To find [tex]\(v\)[/tex], we take the square root of both sides:
[tex]\[ v = \sqrt{64400} \][/tex]
The value of [tex]\(\sqrt{64400}\)[/tex] is approximately [tex]\(253.77 \, \text{ft/s}\)[/tex].
Therefore, the speed of the object when it reaches the ground is approximately [tex]\(\boxed{253.77 \, \text{ft/s}}\)[/tex].
Given:
- The height ([tex]\(h\)[/tex]) from which the object is dropped is [tex]\(1000\)[/tex] feet.
- The acceleration due to gravity ([tex]\(g\)[/tex]) is [tex]\(32.2 \, \text{ft/s}^2\)[/tex].
We will use the kinematic equation for objects in free fall:
[tex]\[ v^2 = u^2 + 2gh \][/tex]
Here:
- [tex]\(v\)[/tex] is the final velocity of the object.
- [tex]\(u\)[/tex] is the initial velocity (which is [tex]\(0\)[/tex] since the object is dropped).
- [tex]\(g\)[/tex] is the acceleration due to gravity.
- [tex]\(h\)[/tex] is the height from which the object is dropped.
Since the object is dropped from rest:
[tex]\[ u = 0 \][/tex]
Substituting this into the equation, we get:
[tex]\[ v^2 = 0^2 + 2gh \][/tex]
[tex]\[ v^2 = 2gh \][/tex]
Now, let's plug in the given values:
[tex]\[ v^2 = 2 \cdot 32.2 \cdot 1000 \][/tex]
So:
[tex]\[ v^2 = 64400 \][/tex]
To find [tex]\(v\)[/tex], we take the square root of both sides:
[tex]\[ v = \sqrt{64400} \][/tex]
The value of [tex]\(\sqrt{64400}\)[/tex] is approximately [tex]\(253.77 \, \text{ft/s}\)[/tex].
Therefore, the speed of the object when it reaches the ground is approximately [tex]\(\boxed{253.77 \, \text{ft/s}}\)[/tex].
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.