Looking for trustworthy answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Experience the convenience of getting accurate answers to your questions from a dedicated community of professionals. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To determine the domain of the function [tex]\((c \cdot d)(x)\)[/tex], defined as the product of the functions [tex]\(c(x)\)[/tex] and [tex]\(d(x)\)[/tex], where [tex]\(c(x) = \frac{5}{x-2}\)[/tex] and [tex]\(d(x) = x+3\)[/tex], we need to look at the domains of the individual functions and find their intersection.
1. Domain of [tex]\(c(x)\)[/tex]:
- [tex]\(c(x) = \frac{5}{x-2}\)[/tex]
- The expression [tex]\(\frac{5}{x-2}\)[/tex] is defined for all [tex]\(x\)[/tex] except [tex]\(x = 2\)[/tex], because the denominator cannot be zero.
- Therefore, the domain of [tex]\(c(x)\)[/tex] is all real numbers except [tex]\(x = 2\)[/tex]. Symbolically, this can be expressed as [tex]\(x \in \mathbb{R} \setminus \{2\}\)[/tex].
2. Domain of [tex]\(d(x)\)[/tex]:
- [tex]\(d(x) = x + 3\)[/tex]
- This is a linear function which is defined for all real numbers.
- Hence, the domain of [tex]\(d(x)\)[/tex] is all real numbers, [tex]\(x \in \mathbb{R}\)[/tex].
3. Domain of [tex]\((c \cdot d)(x)\)[/tex]:
- The domain of the product function [tex]\((c \cdot d)(x) = c(x) \cdot d(x)\)[/tex] is the intersection of the domains of [tex]\(c(x)\)[/tex] and [tex]\(d(x)\)[/tex].
- The intersection of the domains of [tex]\(c(x) \)[/tex] and [tex]\(d(x)\)[/tex] would be all real numbers except [tex]\(x = 2\)[/tex], since this is the only value at which [tex]\(c(x)\)[/tex] is undefined.
Thus, the domain of [tex]\((c \cdot d)(x)\)[/tex] is all real numbers except [tex]\(x = 2\)[/tex]. Therefore, the domain of [tex]\((c \cdot d)(x)\)[/tex] can be expressed as:
[tex]\[ x \in \mathbb{R} \setminus \{2\}. \][/tex]
This concludes that the domain of [tex]\((c \cdot d)(x)\)[/tex] is all real numbers except [tex]\(x = 2\)[/tex].
1. Domain of [tex]\(c(x)\)[/tex]:
- [tex]\(c(x) = \frac{5}{x-2}\)[/tex]
- The expression [tex]\(\frac{5}{x-2}\)[/tex] is defined for all [tex]\(x\)[/tex] except [tex]\(x = 2\)[/tex], because the denominator cannot be zero.
- Therefore, the domain of [tex]\(c(x)\)[/tex] is all real numbers except [tex]\(x = 2\)[/tex]. Symbolically, this can be expressed as [tex]\(x \in \mathbb{R} \setminus \{2\}\)[/tex].
2. Domain of [tex]\(d(x)\)[/tex]:
- [tex]\(d(x) = x + 3\)[/tex]
- This is a linear function which is defined for all real numbers.
- Hence, the domain of [tex]\(d(x)\)[/tex] is all real numbers, [tex]\(x \in \mathbb{R}\)[/tex].
3. Domain of [tex]\((c \cdot d)(x)\)[/tex]:
- The domain of the product function [tex]\((c \cdot d)(x) = c(x) \cdot d(x)\)[/tex] is the intersection of the domains of [tex]\(c(x)\)[/tex] and [tex]\(d(x)\)[/tex].
- The intersection of the domains of [tex]\(c(x) \)[/tex] and [tex]\(d(x)\)[/tex] would be all real numbers except [tex]\(x = 2\)[/tex], since this is the only value at which [tex]\(c(x)\)[/tex] is undefined.
Thus, the domain of [tex]\((c \cdot d)(x)\)[/tex] is all real numbers except [tex]\(x = 2\)[/tex]. Therefore, the domain of [tex]\((c \cdot d)(x)\)[/tex] can be expressed as:
[tex]\[ x \in \mathbb{R} \setminus \{2\}. \][/tex]
This concludes that the domain of [tex]\((c \cdot d)(x)\)[/tex] is all real numbers except [tex]\(x = 2\)[/tex].
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.