At Westonci.ca, we connect you with the answers you need, thanks to our active and informed community. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
Let's determine the [tex]$y$[/tex]-intercept and the horizontal asymptote for the function [tex]\( g(x) = 3^x + 4 \)[/tex].
### Finding the [tex]$y$[/tex]-intercept
The [tex]$y$[/tex]-intercept occurs where [tex]\( x = 0 \)[/tex]. To find the [tex]$y$[/tex]-intercept, evaluate [tex]\( g(x) \)[/tex] at [tex]\( x = 0 \)[/tex]:
[tex]\[ g(0) = 3^0 + 4 \][/tex]
Since [tex]\( 3^0 = 1 \)[/tex]:
[tex]\[ g(0) = 1 + 4 = 5 \][/tex]
Thus, the [tex]$y$[/tex]-intercept of the function is [tex]\( (0, 5) \)[/tex].
### Finding the horizontal asymptote
To determine the horizontal asymptote, we need to analyze the behavior of [tex]\( g(x) = 3^x + 4 \)[/tex] as [tex]\( x \)[/tex] approaches positive and negative infinity.
1. As [tex]\( x \)[/tex] approaches positive infinity ([tex]\( x \rightarrow \infty \)[/tex]):
- [tex]\( 3^x \)[/tex] becomes very large.
- [tex]\( g(x) = 3^x + 4 \)[/tex] will be dominated by the [tex]\( 3^x \)[/tex] term, and the function will go to infinity.
2. As [tex]\( x \)[/tex] approaches negative infinity ([tex]\( x \rightarrow -\infty \)[/tex]):
- [tex]\( 3^x \)[/tex] approaches 0 because any number raised to a negative power decreases towards zero.
- So, [tex]\( g(x) = 3^x + 4 \)[/tex] approaches [tex]\( 0 + 4 \)[/tex].
Hence, as [tex]\( x \)[/tex] approaches negative infinity, [tex]\( g(x) \)[/tex] approaches 4. Thus, the horizontal asymptote is:
[tex]\[ y = 4 \][/tex]
### Conclusion
The [tex]$y$[/tex]-intercept is [tex]\( (0, 5) \)[/tex] and the horizontal asymptote is [tex]\( y = 4 \)[/tex].
Thus, the correct multiple-choice answer is:
[tex]\[ (0, 5); y = 4 \][/tex]
### Finding the [tex]$y$[/tex]-intercept
The [tex]$y$[/tex]-intercept occurs where [tex]\( x = 0 \)[/tex]. To find the [tex]$y$[/tex]-intercept, evaluate [tex]\( g(x) \)[/tex] at [tex]\( x = 0 \)[/tex]:
[tex]\[ g(0) = 3^0 + 4 \][/tex]
Since [tex]\( 3^0 = 1 \)[/tex]:
[tex]\[ g(0) = 1 + 4 = 5 \][/tex]
Thus, the [tex]$y$[/tex]-intercept of the function is [tex]\( (0, 5) \)[/tex].
### Finding the horizontal asymptote
To determine the horizontal asymptote, we need to analyze the behavior of [tex]\( g(x) = 3^x + 4 \)[/tex] as [tex]\( x \)[/tex] approaches positive and negative infinity.
1. As [tex]\( x \)[/tex] approaches positive infinity ([tex]\( x \rightarrow \infty \)[/tex]):
- [tex]\( 3^x \)[/tex] becomes very large.
- [tex]\( g(x) = 3^x + 4 \)[/tex] will be dominated by the [tex]\( 3^x \)[/tex] term, and the function will go to infinity.
2. As [tex]\( x \)[/tex] approaches negative infinity ([tex]\( x \rightarrow -\infty \)[/tex]):
- [tex]\( 3^x \)[/tex] approaches 0 because any number raised to a negative power decreases towards zero.
- So, [tex]\( g(x) = 3^x + 4 \)[/tex] approaches [tex]\( 0 + 4 \)[/tex].
Hence, as [tex]\( x \)[/tex] approaches negative infinity, [tex]\( g(x) \)[/tex] approaches 4. Thus, the horizontal asymptote is:
[tex]\[ y = 4 \][/tex]
### Conclusion
The [tex]$y$[/tex]-intercept is [tex]\( (0, 5) \)[/tex] and the horizontal asymptote is [tex]\( y = 4 \)[/tex].
Thus, the correct multiple-choice answer is:
[tex]\[ (0, 5); y = 4 \][/tex]
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.