Welcome to Westonci.ca, your one-stop destination for finding answers to all your questions. Join our expert community now! Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To determine the angle [tex]\( s \)[/tex] associated with the point [tex]\(\left(-\frac{1}{2}, \frac{\sqrt{3}}{2}\right)\)[/tex] on the unit circle, we follow these steps:
1. Identify the specific point:
The given point [tex]\(\left(-\frac{1}{2}, \frac{\sqrt{3}}{2}\right)\)[/tex] lies on the unit circle, where [tex]\( x = -\frac{1}{2} \)[/tex] and [tex]\( y = \frac{\sqrt{3}}{2} \)[/tex].
2. Determine the corresponding angle in the unit circle:
On the unit circle, points are represented in the form [tex]\((\cos s, \sin s)\)[/tex].
Given [tex]\( \cos s = -\frac{1}{2} \)[/tex] and [tex]\( \sin s = \frac{\sqrt{3}}{2} \)[/tex], this point corresponds to the standard angle of [tex]\( \frac{2\pi}{3} \)[/tex] radians in the second quadrant.
3. Express the angle in the interval [tex]\([0, 2\pi)\)[/tex]:
The angle [tex]\( s = \frac{2\pi}{3} \)[/tex] is already in the interval [tex]\([0, 2\pi)\)[/tex].
4. Identify other rotationally equivalent angles:
Angles on the unit circle can be represented periodically by adding any integer multiple of [tex]\( 2\pi \)[/tex]. Thus, all angles that correspond to the given point can be written in the form:
[tex]\[ s = \frac{2\pi}{3} + 2k\pi \quad \text{where } k \text{ is any integer}. \][/tex]
So, the exact radian answer in the interval [tex]\([0, 2\pi)\)[/tex] is:
[tex]\[ s = \frac{2\pi}{3} \][/tex]
And the general form for all equivalent angles is:
[tex]\[ s = \frac{2\pi}{3} + 2k\pi \quad \text{where } k \text{ is any integer}. \][/tex]
This encapsulates the solution for all real numbers [tex]\( s \)[/tex] associated with the point [tex]\(\left(-\frac{1}{2}, \frac{\sqrt{3}}{2}\right)\)[/tex] on the unit circle.
1. Identify the specific point:
The given point [tex]\(\left(-\frac{1}{2}, \frac{\sqrt{3}}{2}\right)\)[/tex] lies on the unit circle, where [tex]\( x = -\frac{1}{2} \)[/tex] and [tex]\( y = \frac{\sqrt{3}}{2} \)[/tex].
2. Determine the corresponding angle in the unit circle:
On the unit circle, points are represented in the form [tex]\((\cos s, \sin s)\)[/tex].
Given [tex]\( \cos s = -\frac{1}{2} \)[/tex] and [tex]\( \sin s = \frac{\sqrt{3}}{2} \)[/tex], this point corresponds to the standard angle of [tex]\( \frac{2\pi}{3} \)[/tex] radians in the second quadrant.
3. Express the angle in the interval [tex]\([0, 2\pi)\)[/tex]:
The angle [tex]\( s = \frac{2\pi}{3} \)[/tex] is already in the interval [tex]\([0, 2\pi)\)[/tex].
4. Identify other rotationally equivalent angles:
Angles on the unit circle can be represented periodically by adding any integer multiple of [tex]\( 2\pi \)[/tex]. Thus, all angles that correspond to the given point can be written in the form:
[tex]\[ s = \frac{2\pi}{3} + 2k\pi \quad \text{where } k \text{ is any integer}. \][/tex]
So, the exact radian answer in the interval [tex]\([0, 2\pi)\)[/tex] is:
[tex]\[ s = \frac{2\pi}{3} \][/tex]
And the general form for all equivalent angles is:
[tex]\[ s = \frac{2\pi}{3} + 2k\pi \quad \text{where } k \text{ is any integer}. \][/tex]
This encapsulates the solution for all real numbers [tex]\( s \)[/tex] associated with the point [tex]\(\left(-\frac{1}{2}, \frac{\sqrt{3}}{2}\right)\)[/tex] on the unit circle.
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.