Discover the best answers at Westonci.ca, where experts share their insights and knowledge with you. Get quick and reliable answers to your questions from a dedicated community of professionals on our platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
Let's delve into this problem step-by-step to determine the slopes of the lines for Restaurant A and Restaurant B, and then compare them.
### Calculate the Slope for Restaurant A
For Restaurant A, we have the points [tex]\((10, 1)\)[/tex], [tex]\((20, 2)\)[/tex], and [tex]\((30, 3)\)[/tex].
To find the slope of the line (denoted as [tex]\(m_a\)[/tex]) passing through these points, we can use the formula for the slope between two points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex]:
[tex]\[ m = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]
Using the first two points [tex]\((10, 1)\)[/tex] and [tex]\((20, 2)\)[/tex]:
[tex]\[ m_a = \frac{2 - 1}{20 - 10} = \frac{1}{10} = 0.1 \][/tex]
### Calculate the Slope for Restaurant B
For Restaurant B, we have the points [tex]\((25, 5)\)[/tex], [tex]\((50, 10)\)[/tex], and [tex]\((75, 15)\)[/tex].
Using the first two points [tex]\((25, 5)\)[/tex] and [tex]\((50, 10)\)[/tex]:
[tex]\[ m_b = \frac{10 - 5}{50 - 25} = \frac{5}{25} = \frac{1}{5} = 0.2 \][/tex]
### Compare the Slopes
We now have the slopes:
- Slope for Restaurant A: [tex]\(m_a = 0.1\)[/tex]
- Slope for Restaurant B: [tex]\(m_b = 0.2\)[/tex]
To find out how many times greater the slope of Restaurant B ([tex]\(m_b\)[/tex]) is compared to the slope of Restaurant A ([tex]\(m_a\)[/tex]), we can divide [tex]\(m_b\)[/tex] by [tex]\(m_a\)[/tex]:
[tex]\[ \text{Comparison} = \frac{m_b}{m_a} = \frac{0.2}{0.1} = 2.0 \][/tex]
### Conclusion
The slope of the line for Restaurant B is 2 times greater than the slope of the line for Restaurant A.
Hence, the correct comparison is: The slope of the line for Restaurant B is 2 times greater than the slope of the line for Restaurant A.
### Calculate the Slope for Restaurant A
For Restaurant A, we have the points [tex]\((10, 1)\)[/tex], [tex]\((20, 2)\)[/tex], and [tex]\((30, 3)\)[/tex].
To find the slope of the line (denoted as [tex]\(m_a\)[/tex]) passing through these points, we can use the formula for the slope between two points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex]:
[tex]\[ m = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]
Using the first two points [tex]\((10, 1)\)[/tex] and [tex]\((20, 2)\)[/tex]:
[tex]\[ m_a = \frac{2 - 1}{20 - 10} = \frac{1}{10} = 0.1 \][/tex]
### Calculate the Slope for Restaurant B
For Restaurant B, we have the points [tex]\((25, 5)\)[/tex], [tex]\((50, 10)\)[/tex], and [tex]\((75, 15)\)[/tex].
Using the first two points [tex]\((25, 5)\)[/tex] and [tex]\((50, 10)\)[/tex]:
[tex]\[ m_b = \frac{10 - 5}{50 - 25} = \frac{5}{25} = \frac{1}{5} = 0.2 \][/tex]
### Compare the Slopes
We now have the slopes:
- Slope for Restaurant A: [tex]\(m_a = 0.1\)[/tex]
- Slope for Restaurant B: [tex]\(m_b = 0.2\)[/tex]
To find out how many times greater the slope of Restaurant B ([tex]\(m_b\)[/tex]) is compared to the slope of Restaurant A ([tex]\(m_a\)[/tex]), we can divide [tex]\(m_b\)[/tex] by [tex]\(m_a\)[/tex]:
[tex]\[ \text{Comparison} = \frac{m_b}{m_a} = \frac{0.2}{0.1} = 2.0 \][/tex]
### Conclusion
The slope of the line for Restaurant B is 2 times greater than the slope of the line for Restaurant A.
Hence, the correct comparison is: The slope of the line for Restaurant B is 2 times greater than the slope of the line for Restaurant A.
We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.