Find the best solutions to your questions at Westonci.ca, the premier Q&A platform with a community of knowledgeable experts. Get detailed and precise answers to your questions from a dedicated community of experts on our Q&A platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To choose the quadratic equation that models the situation, we need to start with the given function that describes the height [tex]\( h(t) \)[/tex] at any time [tex]\( t \)[/tex]:
[tex]\[ h(t) = -4.9t^2 + h_0 \][/tex]
Our goal is to determine the initial height [tex]\( h_0 \)[/tex] using the data provided in the table. The data points given are:
- At [tex]\( t = 1 \)[/tex] second, [tex]\( h = 55.1 \)[/tex] meters
- At [tex]\( t = 2 \)[/tex] seconds, [tex]\( h = 40.4 \)[/tex] meters
- At [tex]\( t = 3 \)[/tex] seconds, [tex]\( h = 15.9 \)[/tex] meters
Let's use these data points to find [tex]\( h_0 \)[/tex].
### Step-by-Step Solution
1. Substitute the first data point into the equation:
[tex]\[ h(1) = -4.9(1)^2 + h_0 = 55.1 \][/tex]
[tex]\[ -4.9 + h_0 = 55.1 \][/tex]
[tex]\[ h_0 = 55.1 + 4.9 \][/tex]
[tex]\[ h_0 = 60.0 \][/tex]
2. Substitute the second data point into the equation:
[tex]\[ h(2) = -4.9(2)^2 + h_0 = 40.4 \][/tex]
[tex]\[ -4.9 \cdot 4 + h_0 = 40.4 \][/tex]
[tex]\[ -19.6 + h_0 = 40.4 \][/tex]
[tex]\[ h_0 = 40.4 + 19.6 \][/tex]
[tex]\[ h_0 = 60.0 \][/tex]
3. Substitute the third data point into the equation:
[tex]\[ h(3) = -4.9(3)^2 + h_0 = 15.9 \][/tex]
[tex]\[ -4.9 \cdot 9 + h_0 = 15.9 \][/tex]
[tex]\[ -44.1 + h_0 = 15.9 \][/tex]
[tex]\[ h_0 = 15.9 + 44.1 \][/tex]
[tex]\[ h_0 = 60.0 \][/tex]
### Conclusion
From all three data points, we consistently find that the initial height [tex]\( h_0 \)[/tex] is [tex]\( 60.0 \)[/tex] meters. Therefore, the quadratic equation that models the situation is:
[tex]\[ h(t) = -4.9t^2 + 60.0 \][/tex]
[tex]\[ h(t) = -4.9t^2 + h_0 \][/tex]
Our goal is to determine the initial height [tex]\( h_0 \)[/tex] using the data provided in the table. The data points given are:
- At [tex]\( t = 1 \)[/tex] second, [tex]\( h = 55.1 \)[/tex] meters
- At [tex]\( t = 2 \)[/tex] seconds, [tex]\( h = 40.4 \)[/tex] meters
- At [tex]\( t = 3 \)[/tex] seconds, [tex]\( h = 15.9 \)[/tex] meters
Let's use these data points to find [tex]\( h_0 \)[/tex].
### Step-by-Step Solution
1. Substitute the first data point into the equation:
[tex]\[ h(1) = -4.9(1)^2 + h_0 = 55.1 \][/tex]
[tex]\[ -4.9 + h_0 = 55.1 \][/tex]
[tex]\[ h_0 = 55.1 + 4.9 \][/tex]
[tex]\[ h_0 = 60.0 \][/tex]
2. Substitute the second data point into the equation:
[tex]\[ h(2) = -4.9(2)^2 + h_0 = 40.4 \][/tex]
[tex]\[ -4.9 \cdot 4 + h_0 = 40.4 \][/tex]
[tex]\[ -19.6 + h_0 = 40.4 \][/tex]
[tex]\[ h_0 = 40.4 + 19.6 \][/tex]
[tex]\[ h_0 = 60.0 \][/tex]
3. Substitute the third data point into the equation:
[tex]\[ h(3) = -4.9(3)^2 + h_0 = 15.9 \][/tex]
[tex]\[ -4.9 \cdot 9 + h_0 = 15.9 \][/tex]
[tex]\[ -44.1 + h_0 = 15.9 \][/tex]
[tex]\[ h_0 = 15.9 + 44.1 \][/tex]
[tex]\[ h_0 = 60.0 \][/tex]
### Conclusion
From all three data points, we consistently find that the initial height [tex]\( h_0 \)[/tex] is [tex]\( 60.0 \)[/tex] meters. Therefore, the quadratic equation that models the situation is:
[tex]\[ h(t) = -4.9t^2 + 60.0 \][/tex]
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.