Westonci.ca is the ultimate Q&A platform, offering detailed and reliable answers from a knowledgeable community. Explore thousands of questions and answers from knowledgeable experts in various fields on our Q&A platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To determine the original coordinates [tex]\( Q \)[/tex] of the rectangle before it was transformed by the rule [tex]\( R_{0,90^{\circ}} \)[/tex], follow these steps for reversing a 90-degree counter-clockwise rotation.
1. Understand the given transformation:
A [tex]\( 90^{\circ} \)[/tex] counter-clockwise rotation transforms a point [tex]\((x, y)\)[/tex] into [tex]\((y, -x)\)[/tex]. To reverse this transformation, you need to find the original coordinates from the transformed ones.
2. Identify the transformed coordinates of [tex]\( Q' \)[/tex]:
The given coordinates of [tex]\( Q' \)[/tex] after transformation are [tex]\( (-3, 4) \)[/tex].
3. Apply the reverse transformation rule:
To find the original coordinates [tex]\( (x, y) \)[/tex] from [tex]\((x', y')\)[/tex] after a [tex]\( 90^{\circ} \)[/tex] counter-clockwise rotation, the rule is given by:
[tex]\[ (x, y) = (y', -x') \][/tex]
4. Substitute the values of [tex]\( Q' \)[/tex]:
Since [tex]\( Q' \)[/tex] = [tex]\( (-3, 4) \)[/tex], you substitute these values into the rule:
[tex]\[ x = y' = 4 \][/tex]
[tex]\[ y = -x' = -(-3) = 3 \][/tex]
5. Combine the results:
So, the original coordinates [tex]\( Q \)[/tex] are:
[tex]\[ Q = (4, 3) \][/tex]
Therefore, the location of [tex]\( Q \)[/tex] is [tex]\( (4, 3) \)[/tex].
So, the correct choice is [tex]\((4, 3)\)[/tex].
1. Understand the given transformation:
A [tex]\( 90^{\circ} \)[/tex] counter-clockwise rotation transforms a point [tex]\((x, y)\)[/tex] into [tex]\((y, -x)\)[/tex]. To reverse this transformation, you need to find the original coordinates from the transformed ones.
2. Identify the transformed coordinates of [tex]\( Q' \)[/tex]:
The given coordinates of [tex]\( Q' \)[/tex] after transformation are [tex]\( (-3, 4) \)[/tex].
3. Apply the reverse transformation rule:
To find the original coordinates [tex]\( (x, y) \)[/tex] from [tex]\((x', y')\)[/tex] after a [tex]\( 90^{\circ} \)[/tex] counter-clockwise rotation, the rule is given by:
[tex]\[ (x, y) = (y', -x') \][/tex]
4. Substitute the values of [tex]\( Q' \)[/tex]:
Since [tex]\( Q' \)[/tex] = [tex]\( (-3, 4) \)[/tex], you substitute these values into the rule:
[tex]\[ x = y' = 4 \][/tex]
[tex]\[ y = -x' = -(-3) = 3 \][/tex]
5. Combine the results:
So, the original coordinates [tex]\( Q \)[/tex] are:
[tex]\[ Q = (4, 3) \][/tex]
Therefore, the location of [tex]\( Q \)[/tex] is [tex]\( (4, 3) \)[/tex].
So, the correct choice is [tex]\((4, 3)\)[/tex].
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.