Discover the answers you need at Westonci.ca, a dynamic Q&A platform where knowledge is shared freely by a community of experts. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To find [tex]\(\sec(\theta)\)[/tex] given that [tex]\(\tan(\theta) = 2\)[/tex] and [tex]\(\theta\)[/tex] lies in Quadrant II, we can use a Pythagorean identity and follow a detailed step-by-step approach.
1. Use the Pythagorean identity: The identity relating [tex]\(\tan(\theta)\)[/tex] and [tex]\(\sec(\theta)\)[/tex] is:
[tex]\[ 1 + \tan^2(\theta) = \sec^2(\theta) \][/tex]
2. Substitute the given value: We are given that [tex]\(\tan(\theta) = 2\)[/tex]. Substitute this value into the identity:
[tex]\[ 1 + (2)^2 = \sec^2(\theta) \][/tex]
3. Simplify:
[tex]\[ 1 + 4 = \sec^2(\theta) \][/tex]
[tex]\[ \sec^2(\theta) = 5 \][/tex]
4. Solve for [tex]\(\sec(\theta)\)[/tex]: To find [tex]\(\sec(\theta)\)[/tex], take the square root of both sides:
[tex]\[ \sec(\theta) = \pm\sqrt{5} \][/tex]
5. Determine the sign based on the quadrant: Since [tex]\(\theta\)[/tex] is in Quadrant II, we know that [tex]\(\cos(\theta)\)[/tex] is negative (since cosine is negative in the second quadrant). Consequently, [tex]\(\sec(\theta)\)[/tex], which is the reciprocal of [tex]\(\cos(\theta)\)[/tex], will also be negative.
Putting it all together, we have:
[tex]\[ \sec(\theta) = -\sqrt{5} \][/tex]
Therefore, the exact, fully simplified answer is:
[tex]\[ \sec(\theta) = -\sqrt{5} \][/tex]
1. Use the Pythagorean identity: The identity relating [tex]\(\tan(\theta)\)[/tex] and [tex]\(\sec(\theta)\)[/tex] is:
[tex]\[ 1 + \tan^2(\theta) = \sec^2(\theta) \][/tex]
2. Substitute the given value: We are given that [tex]\(\tan(\theta) = 2\)[/tex]. Substitute this value into the identity:
[tex]\[ 1 + (2)^2 = \sec^2(\theta) \][/tex]
3. Simplify:
[tex]\[ 1 + 4 = \sec^2(\theta) \][/tex]
[tex]\[ \sec^2(\theta) = 5 \][/tex]
4. Solve for [tex]\(\sec(\theta)\)[/tex]: To find [tex]\(\sec(\theta)\)[/tex], take the square root of both sides:
[tex]\[ \sec(\theta) = \pm\sqrt{5} \][/tex]
5. Determine the sign based on the quadrant: Since [tex]\(\theta\)[/tex] is in Quadrant II, we know that [tex]\(\cos(\theta)\)[/tex] is negative (since cosine is negative in the second quadrant). Consequently, [tex]\(\sec(\theta)\)[/tex], which is the reciprocal of [tex]\(\cos(\theta)\)[/tex], will also be negative.
Putting it all together, we have:
[tex]\[ \sec(\theta) = -\sqrt{5} \][/tex]
Therefore, the exact, fully simplified answer is:
[tex]\[ \sec(\theta) = -\sqrt{5} \][/tex]
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.