Looking for answers? Westonci.ca is your go-to Q&A platform, offering quick, trustworthy responses from a community of experts. Explore in-depth answers to your questions from a knowledgeable community of experts across different fields. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To solve the inequality [tex]\( 3|x+2|<6 \)[/tex], let's go through the steps methodically:
1. Isolate the absolute value:
First, divide both sides of the inequality by 3:
[tex]\[ 3|x + 2| < 6 \implies |x + 2| < 2 \][/tex]
2. Remove the absolute value:
To handle an absolute value inequality [tex]\( |x + 2| < 2 \)[/tex], rewrite it as two separate inequalities:
[tex]\[ -2 < x + 2 < 2 \][/tex]
3. Solve the inequalities:
Subtract 2 from all three parts of the inequality:
[tex]\[ -2 - 2 < x + 2 - 2 < 2 - 2 \][/tex]
[tex]\[ -4 < x < 0 \][/tex]
Therefore, the solution to the inequality is:
[tex]\[ x > -4 \quad \text{and} \quad x < 0 \][/tex]
This represents the interval [tex]\((-4, 0)\)[/tex].
Comparing the solutions provided in the options:
- Option A: Solution: [tex]\(x > -4\)[/tex] and [tex]\(x < 0\)[/tex]; graph:
- Option B: Solution: [tex]\(x < 0\)[/tex] or [tex]\(x > 4\)[/tex]; graph:
- Option C: Solution: [tex]\(x < -4\)[/tex] or [tex]\(x > 0\)[/tex]; graph:
- Option D: Solution: [tex]\(x > -4\)[/tex] and [tex]\(x < 0\)[/tex]; graph:
Options A and D provide the correct solution [tex]\(x > -4\)[/tex] and [tex]\(x < 0\)[/tex].
So the correct choice is:
A or D with the solution range [tex]\(x > -4\)[/tex] and [tex]\(x < 0\)[/tex].
1. Isolate the absolute value:
First, divide both sides of the inequality by 3:
[tex]\[ 3|x + 2| < 6 \implies |x + 2| < 2 \][/tex]
2. Remove the absolute value:
To handle an absolute value inequality [tex]\( |x + 2| < 2 \)[/tex], rewrite it as two separate inequalities:
[tex]\[ -2 < x + 2 < 2 \][/tex]
3. Solve the inequalities:
Subtract 2 from all three parts of the inequality:
[tex]\[ -2 - 2 < x + 2 - 2 < 2 - 2 \][/tex]
[tex]\[ -4 < x < 0 \][/tex]
Therefore, the solution to the inequality is:
[tex]\[ x > -4 \quad \text{and} \quad x < 0 \][/tex]
This represents the interval [tex]\((-4, 0)\)[/tex].
Comparing the solutions provided in the options:
- Option A: Solution: [tex]\(x > -4\)[/tex] and [tex]\(x < 0\)[/tex]; graph:
- Option B: Solution: [tex]\(x < 0\)[/tex] or [tex]\(x > 4\)[/tex]; graph:
- Option C: Solution: [tex]\(x < -4\)[/tex] or [tex]\(x > 0\)[/tex]; graph:
- Option D: Solution: [tex]\(x > -4\)[/tex] and [tex]\(x < 0\)[/tex]; graph:
Options A and D provide the correct solution [tex]\(x > -4\)[/tex] and [tex]\(x < 0\)[/tex].
So the correct choice is:
A or D with the solution range [tex]\(x > -4\)[/tex] and [tex]\(x < 0\)[/tex].
We hope this was helpful. Please come back whenever you need more information or answers to your queries. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.