Welcome to Westonci.ca, the ultimate question and answer platform. Get expert answers to your questions quickly and accurately. Join our platform to connect with experts ready to provide precise answers to your questions in various areas. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.

What is the sum, in standard form, of [tex]\((5x^3 - 7x^2 + x^4) + (12x^2 + 3x^3 - 2x^4)\)[/tex]?

Enter the correct answer in the box.

[tex]\(\square\)[/tex]


Sagot :

To find the sum of the polynomials [tex]\((5x^3 - 7x^2 + x^4) + (12x^2 + 3x^3 - 2x^4)\)[/tex], follow these steps:

1. Align the polynomials by their degrees and combine like terms:

[tex]\[ \begin{aligned} & (+x^4) + (-2x^4) \\ & (+5x^3) + (+3x^3) \\ & (-7x^2) + (+12x^2) \\ \end{aligned} \][/tex]

2. Add the coefficients of the like terms:

- Coefficient of [tex]\(x^4\)[/tex]: [tex]\(1 - 2 = -1\)[/tex]
- Coefficient of [tex]\(x^3\)[/tex]: [tex]\(5 + 3 = 8\)[/tex]
- Coefficient of [tex]\(x^2\)[/tex]: [tex]\(-7 + 12 = 5\)[/tex]

3. Write the resulting polynomial by combining these like terms:

[tex]\[ -x^4 + 8x^3 + 5x^2 \][/tex]

4. Express the polynomial in standard form:
- Standard form means writing the polynomial in descending order of the powers of [tex]\(x\)[/tex].
- We already have it in standard form: [tex]\(-x^4 + 8x^3 + 5x^2\)[/tex].

5. Factor out any common terms (optional, but sometimes required):
- We can factor out [tex]\(x^2\)[/tex]:

[tex]\[ -x^4 + 8x^3 + 5x^2 = x^2(-x^2 + 8x + 5) \][/tex]

Therefore, the final answer in standard form is:

[tex]\[ \boxed{x^2(-x^2 + 8x + 5)} \][/tex]