Discover the answers you need at Westonci.ca, where experts provide clear and concise information on various topics. Discover precise answers to your questions from a wide range of experts on our user-friendly Q&A platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To find the recursive rule for the given geometric sequence [tex]\( f(n) = 13 (1.3)^{n-1} \)[/tex], let's analyze each part of the sequence step-by-step.
1. Initial Term:
The initial term [tex]\( f(1) \)[/tex] is given by plugging in [tex]\( n = 1 \)[/tex] into the formula:
[tex]\[ f(1) = 13 \cdot (1.3)^{1-1} = 13 \cdot (1.3)^0 = 13 \cdot 1 = 13 \][/tex]
So, we have:
[tex]\[ f(1) = 13 \][/tex]
2. Recursive Relationship:
A geometric sequence has a common ratio between consecutive terms. For this sequence, the common ratio [tex]\( r \)[/tex] can be determined from the formula:
[tex]\[ f(n) = 13 \cdot (1.3)^{n-1} \][/tex]
To find the relationship between [tex]\( f(n) \)[/tex] and [tex]\( f(n-1) \)[/tex], consider:
[tex]\[ f(n-1) = 13 \cdot (1.3)^{(n-1)-1} = 13 \cdot (1.3)^{n-2} \][/tex]
To express [tex]\( f(n) \)[/tex] using [tex]\( f(n-1) \)[/tex]:
\begin{align}
f(n) &= 13 \cdot (1.3)^{n-1} \\
&= 13 \cdot (1.3)^{n-2} \cdot (1.3)^1 \\
&= (13 \cdot (1.3)^{n-2}) \cdot 1.3 \\
&= f(n-1) \cdot 1.3
\end{align}
Therefore, the recursive relationship is:
[tex]\[ f(n) = 1.3 \cdot f(n-1) \quad \text{for} \quad n \geq 2 \][/tex]
Combining both the initial term and the recursive relationship, the recursive rule for the geometric sequence is:
[tex]\[ f(1) = 13, \quad f(n) = 1.3 \cdot f(n-1) \quad \text{for} \quad n \geq 2 \][/tex]
Thus, the correct choice is:
\[
f(1)=13, \quad f(n)=1.3 \cdot f(n-1), \quad n\geq 2
\
1. Initial Term:
The initial term [tex]\( f(1) \)[/tex] is given by plugging in [tex]\( n = 1 \)[/tex] into the formula:
[tex]\[ f(1) = 13 \cdot (1.3)^{1-1} = 13 \cdot (1.3)^0 = 13 \cdot 1 = 13 \][/tex]
So, we have:
[tex]\[ f(1) = 13 \][/tex]
2. Recursive Relationship:
A geometric sequence has a common ratio between consecutive terms. For this sequence, the common ratio [tex]\( r \)[/tex] can be determined from the formula:
[tex]\[ f(n) = 13 \cdot (1.3)^{n-1} \][/tex]
To find the relationship between [tex]\( f(n) \)[/tex] and [tex]\( f(n-1) \)[/tex], consider:
[tex]\[ f(n-1) = 13 \cdot (1.3)^{(n-1)-1} = 13 \cdot (1.3)^{n-2} \][/tex]
To express [tex]\( f(n) \)[/tex] using [tex]\( f(n-1) \)[/tex]:
\begin{align}
f(n) &= 13 \cdot (1.3)^{n-1} \\
&= 13 \cdot (1.3)^{n-2} \cdot (1.3)^1 \\
&= (13 \cdot (1.3)^{n-2}) \cdot 1.3 \\
&= f(n-1) \cdot 1.3
\end{align}
Therefore, the recursive relationship is:
[tex]\[ f(n) = 1.3 \cdot f(n-1) \quad \text{for} \quad n \geq 2 \][/tex]
Combining both the initial term and the recursive relationship, the recursive rule for the geometric sequence is:
[tex]\[ f(1) = 13, \quad f(n) = 1.3 \cdot f(n-1) \quad \text{for} \quad n \geq 2 \][/tex]
Thus, the correct choice is:
\[
f(1)=13, \quad f(n)=1.3 \cdot f(n-1), \quad n\geq 2
\
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.