Westonci.ca makes finding answers easy, with a community of experts ready to provide you with the information you seek. Get detailed and precise answers to your questions from a dedicated community of experts on our Q&A platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To determine the intervals over which the function [tex]\( h(x) \)[/tex] is decreasing, we need to analyze its behavior and its derivative for both pieces of the function: [tex]\( 2^x \)[/tex] when [tex]\( x < 1 \)[/tex], and [tex]\( \sqrt{x+3} \)[/tex] when [tex]\( x \geq 1 \)[/tex].
First, let's consider the function [tex]\( 2^x \)[/tex] in the interval [tex]\( x < 1 \)[/tex].
1. [tex]\( 2^x \)[/tex] for [tex]\( x < 1 \)[/tex]:
- To understand if this part is increasing or decreasing, we calculate its derivative.
- The derivative of [tex]\( 2^x \)[/tex] is [tex]\( 2^x \ln(2) \)[/tex].
- Since [tex]\( 2^x \)[/tex] is always positive and [tex]\( \ln(2) \)[/tex] is a positive constant, [tex]\( 2^x \ln(2) \)[/tex] is always positive.
- Therefore, [tex]\( 2^x \)[/tex] is always increasing for [tex]\( x < 1 \)[/tex].
Next, let's consider the function [tex]\( \sqrt{x+3} \)[/tex] in the interval [tex]\( x \geq 1 \)[/tex].
2. [tex]\( \sqrt{x+3} \)[/tex] for [tex]\( x \geq 1 \)[/tex]:
- To check if this part is increasing or decreasing, we calculate its derivative.
- The derivative of [tex]\( \sqrt{x+3} \)[/tex] is [tex]\( \frac{1}{2\sqrt{x+3}} \)[/tex].
- Since [tex]\( x+3 \)[/tex] is positive for [tex]\( x \geq 1 \)[/tex], [tex]\( \sqrt{x+3} \)[/tex] is positive and [tex]\( \frac{1}{2\sqrt{x+3}} \)[/tex] is also always positive.
- Therefore, [tex]\( \sqrt{x+3} \)[/tex] is always increasing for [tex]\( x \geq 1 \)[/tex].
From these analyses, we find that both parts of the function are increasing in their respective intervals. Hence, the function [tex]\( h(x) \)[/tex] is never decreasing over its entire domain.
Therefore, the correct answer is:
A. The function is increasing only.
First, let's consider the function [tex]\( 2^x \)[/tex] in the interval [tex]\( x < 1 \)[/tex].
1. [tex]\( 2^x \)[/tex] for [tex]\( x < 1 \)[/tex]:
- To understand if this part is increasing or decreasing, we calculate its derivative.
- The derivative of [tex]\( 2^x \)[/tex] is [tex]\( 2^x \ln(2) \)[/tex].
- Since [tex]\( 2^x \)[/tex] is always positive and [tex]\( \ln(2) \)[/tex] is a positive constant, [tex]\( 2^x \ln(2) \)[/tex] is always positive.
- Therefore, [tex]\( 2^x \)[/tex] is always increasing for [tex]\( x < 1 \)[/tex].
Next, let's consider the function [tex]\( \sqrt{x+3} \)[/tex] in the interval [tex]\( x \geq 1 \)[/tex].
2. [tex]\( \sqrt{x+3} \)[/tex] for [tex]\( x \geq 1 \)[/tex]:
- To check if this part is increasing or decreasing, we calculate its derivative.
- The derivative of [tex]\( \sqrt{x+3} \)[/tex] is [tex]\( \frac{1}{2\sqrt{x+3}} \)[/tex].
- Since [tex]\( x+3 \)[/tex] is positive for [tex]\( x \geq 1 \)[/tex], [tex]\( \sqrt{x+3} \)[/tex] is positive and [tex]\( \frac{1}{2\sqrt{x+3}} \)[/tex] is also always positive.
- Therefore, [tex]\( \sqrt{x+3} \)[/tex] is always increasing for [tex]\( x \geq 1 \)[/tex].
From these analyses, we find that both parts of the function are increasing in their respective intervals. Hence, the function [tex]\( h(x) \)[/tex] is never decreasing over its entire domain.
Therefore, the correct answer is:
A. The function is increasing only.
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.