Explore Westonci.ca, the premier Q&A site that helps you find precise answers to your questions, no matter the topic. Ask your questions and receive accurate answers from professionals with extensive experience in various fields on our platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To find the resulting pressure when the volume of the container is decreased, we can use Boyle's Law, which states that for a given amount of gas at constant temperature, the pressure of the gas is inversely proportional to its volume. Mathematically, Boyle's Law is expressed as:
[tex]\[ P_1 \cdot V_1 = P_2 \cdot V_2 \][/tex]
where:
- [tex]\( P_1 \)[/tex] is the initial pressure,
- [tex]\( V_1 \)[/tex] is the initial volume,
- [tex]\( P_2 \)[/tex] is the final pressure, and
- [tex]\( V_2 \)[/tex] is the final volume.
Given the values:
- [tex]\( V_1 = 2.0 \, L \)[/tex]
- [tex]\( P_1 = 1.5 \, atm \)[/tex]
- [tex]\( V_2 = 1.0 \, L \)[/tex]
We need to find the final pressure [tex]\( P_2 \)[/tex]. Let's rearrange the formula to solve for [tex]\( P_2 \)[/tex]:
[tex]\[ P_2 = \frac{P_1 \cdot V_1}{V_2} \][/tex]
Now, substituting the known values into the equation:
[tex]\[ P_2 = \frac{1.5 \, \text{atm} \cdot 2.0 \, \text{L}}{1.0 \, \text{L}} \][/tex]
Perform the multiplication and division:
[tex]\[ P_2 = \frac{3.0 \, \text{atm} \cdot \text{L}}{1.0 \, \text{L}} \][/tex]
[tex]\[ P_2 = 3.0 \, \text{atm} \][/tex]
Therefore, the resulting pressure when the volume of the container is decreased to [tex]\( 1.0 \, L \)[/tex] is [tex]\( 3.0 \, \text{atm} \)[/tex], using the correct number of significant figures.
[tex]\[ P_1 \cdot V_1 = P_2 \cdot V_2 \][/tex]
where:
- [tex]\( P_1 \)[/tex] is the initial pressure,
- [tex]\( V_1 \)[/tex] is the initial volume,
- [tex]\( P_2 \)[/tex] is the final pressure, and
- [tex]\( V_2 \)[/tex] is the final volume.
Given the values:
- [tex]\( V_1 = 2.0 \, L \)[/tex]
- [tex]\( P_1 = 1.5 \, atm \)[/tex]
- [tex]\( V_2 = 1.0 \, L \)[/tex]
We need to find the final pressure [tex]\( P_2 \)[/tex]. Let's rearrange the formula to solve for [tex]\( P_2 \)[/tex]:
[tex]\[ P_2 = \frac{P_1 \cdot V_1}{V_2} \][/tex]
Now, substituting the known values into the equation:
[tex]\[ P_2 = \frac{1.5 \, \text{atm} \cdot 2.0 \, \text{L}}{1.0 \, \text{L}} \][/tex]
Perform the multiplication and division:
[tex]\[ P_2 = \frac{3.0 \, \text{atm} \cdot \text{L}}{1.0 \, \text{L}} \][/tex]
[tex]\[ P_2 = 3.0 \, \text{atm} \][/tex]
Therefore, the resulting pressure when the volume of the container is decreased to [tex]\( 1.0 \, L \)[/tex] is [tex]\( 3.0 \, \text{atm} \)[/tex], using the correct number of significant figures.
We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.