Welcome to Westonci.ca, your one-stop destination for finding answers to all your questions. Join our expert community now! Explore our Q&A platform to find in-depth answers from a wide range of experts in different fields. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To determine the domain of the function [tex]\( f(t) = \sqrt{3t - 9} \)[/tex], we need to make sure that the expression inside the square root, [tex]\( 3t - 9 \)[/tex], is non-negative (i.e., greater than or equal to zero). This is because the square root function is only defined for non-negative numbers.
Here are the steps to find the domain:
1. Define the inequality:
[tex]\[ 3t - 9 \geq 0 \][/tex]
2. Solve the inequality for [tex]\( t \)[/tex]:
- Add 9 to both sides to isolate the term with [tex]\( t \)[/tex]:
[tex]\[ 3t \geq 9 \][/tex]
- Divide both sides by 3 to solve for [tex]\( t \)[/tex]:
[tex]\[ t \geq \frac{9}{3} \][/tex]
[tex]\[ t \geq 3 \][/tex]
So, for the function [tex]\( f(t) = \sqrt{3t - 9} \)[/tex] to be defined, [tex]\( t \)[/tex] must be greater than or equal to 3.
Therefore, the domain of the function is:
[tex]\[ t \geq 3 \][/tex]
In interval notation, the domain can be expressed as:
[tex]\[ [3, \infty) \][/tex]
Thus, the minimum value of [tex]\( t \)[/tex] for which the function [tex]\( f(t) = \sqrt{3t - 9} \)[/tex] is defined is [tex]\( 3 \)[/tex].
Here are the steps to find the domain:
1. Define the inequality:
[tex]\[ 3t - 9 \geq 0 \][/tex]
2. Solve the inequality for [tex]\( t \)[/tex]:
- Add 9 to both sides to isolate the term with [tex]\( t \)[/tex]:
[tex]\[ 3t \geq 9 \][/tex]
- Divide both sides by 3 to solve for [tex]\( t \)[/tex]:
[tex]\[ t \geq \frac{9}{3} \][/tex]
[tex]\[ t \geq 3 \][/tex]
So, for the function [tex]\( f(t) = \sqrt{3t - 9} \)[/tex] to be defined, [tex]\( t \)[/tex] must be greater than or equal to 3.
Therefore, the domain of the function is:
[tex]\[ t \geq 3 \][/tex]
In interval notation, the domain can be expressed as:
[tex]\[ [3, \infty) \][/tex]
Thus, the minimum value of [tex]\( t \)[/tex] for which the function [tex]\( f(t) = \sqrt{3t - 9} \)[/tex] is defined is [tex]\( 3 \)[/tex].
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.