Welcome to Westonci.ca, where your questions are met with accurate answers from a community of experts and enthusiasts. Get immediate and reliable answers to your questions from a community of experienced experts on our platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
Let's begin by understanding the information given in the problem:
1. Serena spent 2 hours traveling from city A to city B at a speed of 60 km/h.
2. She then spent 3 hours traveling from city B to city C.
3. The ratio of the speed from city A to city B to the speed from city B to city C is given as 3:4.
First, let's identify the speed from city A to city B:
- Speed from city A to city B is 60 km/h.
Next, we need to find the speed from city B to city C. We know that the ratio of the speed from city A to city B to the speed from city B to city C is 3:4. This means that if the speed from city A to city B is 3 units, the speed from city B to city C is 4 units.
Let's denote the speed from city B to city C as [tex]\( v_{B \to C} \)[/tex].
Since the ratio of the speed from A to B to the speed from B to C is 3:4, we can write:
[tex]\[ \frac{\text{Speed from A to B}}{\text{Speed from B to C}} = \frac{3}{4} \][/tex]
Given that the speed from A to B is 60 km/h, we can substitute this value into the ratio:
[tex]\[ \frac{60}{v_{B \to C}} = \frac{3}{4} \][/tex]
To find [tex]\( v_{B \to C} \)[/tex], we solve this equation:
[tex]\[ 60 = \frac{3}{4} \times v_{B \to C} \][/tex]
Multiplying both sides by 4 to eliminate the fraction:
[tex]\[ 60 \times 4 = 3 \times v_{B \to C} \][/tex]
[tex]\[ 240 = 3 \times v_{B \to C} \][/tex]
Now, divide both sides by 3 to isolate [tex]\( v_{B \to C} \)[/tex]:
[tex]\[ v_{B \to C} = \frac{240}{3} \][/tex]
[tex]\[ v_{B \to C} = 80 \][/tex]
Therefore, the speed from city B to city C is [tex]\( \boxed{80 \text{ km/h}} \)[/tex].
1. Serena spent 2 hours traveling from city A to city B at a speed of 60 km/h.
2. She then spent 3 hours traveling from city B to city C.
3. The ratio of the speed from city A to city B to the speed from city B to city C is given as 3:4.
First, let's identify the speed from city A to city B:
- Speed from city A to city B is 60 km/h.
Next, we need to find the speed from city B to city C. We know that the ratio of the speed from city A to city B to the speed from city B to city C is 3:4. This means that if the speed from city A to city B is 3 units, the speed from city B to city C is 4 units.
Let's denote the speed from city B to city C as [tex]\( v_{B \to C} \)[/tex].
Since the ratio of the speed from A to B to the speed from B to C is 3:4, we can write:
[tex]\[ \frac{\text{Speed from A to B}}{\text{Speed from B to C}} = \frac{3}{4} \][/tex]
Given that the speed from A to B is 60 km/h, we can substitute this value into the ratio:
[tex]\[ \frac{60}{v_{B \to C}} = \frac{3}{4} \][/tex]
To find [tex]\( v_{B \to C} \)[/tex], we solve this equation:
[tex]\[ 60 = \frac{3}{4} \times v_{B \to C} \][/tex]
Multiplying both sides by 4 to eliminate the fraction:
[tex]\[ 60 \times 4 = 3 \times v_{B \to C} \][/tex]
[tex]\[ 240 = 3 \times v_{B \to C} \][/tex]
Now, divide both sides by 3 to isolate [tex]\( v_{B \to C} \)[/tex]:
[tex]\[ v_{B \to C} = \frac{240}{3} \][/tex]
[tex]\[ v_{B \to C} = 80 \][/tex]
Therefore, the speed from city B to city C is [tex]\( \boxed{80 \text{ km/h}} \)[/tex].
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.