Welcome to Westonci.ca, the place where your questions are answered by a community of knowledgeable contributors. Get detailed and accurate answers to your questions from a community of experts on our comprehensive Q&A platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
Certainly! Let's address each part of the question step-by-step.
### Part i: Mean, Variance, and Standard Deviation of [tex]\( X \)[/tex]
Given:
- Probability of a worker not having health insurance, [tex]\( p = 0.4 \)[/tex].
- Number of workers in the sample, [tex]\( n = 25 \)[/tex].
#### Mean
The mean [tex]\( \mu \)[/tex] of a binomial distribution is given by:
[tex]\[ \mu = n \cdot p \][/tex]
Substituting the values:
[tex]\[ \mu = 25 \cdot 0.4 = 10.0 \][/tex]
#### Variance
The variance [tex]\( \sigma^2 \)[/tex] of a binomial distribution is given by:
[tex]\[ \sigma^2 = n \cdot p \cdot (1 - p) \][/tex]
Substituting the values:
[tex]\[ \sigma^2 = 25 \cdot 0.4 \cdot (1 - 0.4) = 25 \cdot 0.4 \cdot 0.6 = 6.0 \][/tex]
#### Standard Deviation
The standard deviation [tex]\( \sigma \)[/tex] is the square root of the variance:
[tex]\[ \sigma = \sqrt{\sigma^2} \][/tex]
Substituting the variance:
[tex]\[ \sigma = \sqrt{6.0} \approx 2.449 \][/tex]
So, the mean is [tex]\( 10.0 \)[/tex], the variance is [tex]\( 6.0 \)[/tex], and the standard deviation is approximately [tex]\( 2.449 \)[/tex].
### Part ii: Probability Calculations
#### (a) [tex]\( P(X \geq 20) \)[/tex]
To find [tex]\( P(X \geq 20) \)[/tex], we use the cumulative distribution function (CDF) of the binomial distribution. The CDF up to 19 gives us [tex]\( P(X \leq 19) \)[/tex], so:
[tex]\[ P(X \geq 20) = 1 - P(X \leq 19) \][/tex]
From the computations, [tex]\( P(X \leq 19) \approx 0.999946410253622 \)[/tex], so:
[tex]\[ P(X \geq 20) = 1 - 0.999946410253622 \approx 5.359 \times 10^{-5} \][/tex]
#### (b) [tex]\( P(X \leq 5) \)[/tex]
The probability [tex]\( P(X \leq 5) \)[/tex] can be found directly using the CDF of the binomial distribution:
[tex]\[ P(X \leq 5) \approx 0.02936 \][/tex]
#### (c) [tex]\( P(X = 10) \)[/tex]
The probability [tex]\( P(X = 10) \)[/tex] is given by the probability mass function (PMF) of the binomial distribution:
[tex]\[ P(X = 10) \approx 0.16116 \][/tex]
### Summary:
- Mean: [tex]\( 10.0 \)[/tex]
- Variance: [tex]\( 6.0 \)[/tex]
- Standard Deviation: [tex]\( 2.449 \)[/tex]
- [tex]\( P(X \geq 20) \approx 5.359 \times 10^{-5} \)[/tex]
- [tex]\( P(X \leq 5) \approx 0.02936 \)[/tex]
- [tex]\( P(X = 10) \approx 0.16116 \)[/tex]
### Part i: Mean, Variance, and Standard Deviation of [tex]\( X \)[/tex]
Given:
- Probability of a worker not having health insurance, [tex]\( p = 0.4 \)[/tex].
- Number of workers in the sample, [tex]\( n = 25 \)[/tex].
#### Mean
The mean [tex]\( \mu \)[/tex] of a binomial distribution is given by:
[tex]\[ \mu = n \cdot p \][/tex]
Substituting the values:
[tex]\[ \mu = 25 \cdot 0.4 = 10.0 \][/tex]
#### Variance
The variance [tex]\( \sigma^2 \)[/tex] of a binomial distribution is given by:
[tex]\[ \sigma^2 = n \cdot p \cdot (1 - p) \][/tex]
Substituting the values:
[tex]\[ \sigma^2 = 25 \cdot 0.4 \cdot (1 - 0.4) = 25 \cdot 0.4 \cdot 0.6 = 6.0 \][/tex]
#### Standard Deviation
The standard deviation [tex]\( \sigma \)[/tex] is the square root of the variance:
[tex]\[ \sigma = \sqrt{\sigma^2} \][/tex]
Substituting the variance:
[tex]\[ \sigma = \sqrt{6.0} \approx 2.449 \][/tex]
So, the mean is [tex]\( 10.0 \)[/tex], the variance is [tex]\( 6.0 \)[/tex], and the standard deviation is approximately [tex]\( 2.449 \)[/tex].
### Part ii: Probability Calculations
#### (a) [tex]\( P(X \geq 20) \)[/tex]
To find [tex]\( P(X \geq 20) \)[/tex], we use the cumulative distribution function (CDF) of the binomial distribution. The CDF up to 19 gives us [tex]\( P(X \leq 19) \)[/tex], so:
[tex]\[ P(X \geq 20) = 1 - P(X \leq 19) \][/tex]
From the computations, [tex]\( P(X \leq 19) \approx 0.999946410253622 \)[/tex], so:
[tex]\[ P(X \geq 20) = 1 - 0.999946410253622 \approx 5.359 \times 10^{-5} \][/tex]
#### (b) [tex]\( P(X \leq 5) \)[/tex]
The probability [tex]\( P(X \leq 5) \)[/tex] can be found directly using the CDF of the binomial distribution:
[tex]\[ P(X \leq 5) \approx 0.02936 \][/tex]
#### (c) [tex]\( P(X = 10) \)[/tex]
The probability [tex]\( P(X = 10) \)[/tex] is given by the probability mass function (PMF) of the binomial distribution:
[tex]\[ P(X = 10) \approx 0.16116 \][/tex]
### Summary:
- Mean: [tex]\( 10.0 \)[/tex]
- Variance: [tex]\( 6.0 \)[/tex]
- Standard Deviation: [tex]\( 2.449 \)[/tex]
- [tex]\( P(X \geq 20) \approx 5.359 \times 10^{-5} \)[/tex]
- [tex]\( P(X \leq 5) \approx 0.02936 \)[/tex]
- [tex]\( P(X = 10) \approx 0.16116 \)[/tex]
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.