Welcome to Westonci.ca, your one-stop destination for finding answers to all your questions. Join our expert community now! Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
Alright, let's solve this problem step-by-step using Boyle's Law, which states that the pressure and volume of a gas have an inverse relationship when temperature and the number of moles are constant. Mathematically, this is expressed as:
[tex]\[ P_1 \times V_1 = P_2 \times V_2 \][/tex]
Given data:
- Initial pressure, [tex]\( P_1 = 151 \text{ mm Hg} \)[/tex]
- Final pressure, [tex]\( P_2 = 166 \text{ mm Hg} \)[/tex]
- Final volume, [tex]\( V_2 = 0.532 \text{ L} \)[/tex]
We need to determine the initial volume, [tex]\( V_1 \)[/tex].
Rearranging the formula to solve for [tex]\( V_1 \)[/tex]:
[tex]\[ V_1 = \frac{P_2 \times V_2}{P_1} \][/tex]
Now let's substitute the given values into the equation:
[tex]\[ V_1 = \frac{166 \text{ mm Hg} \times 0.532 \text{ L}}{151 \text{ mm Hg}} \][/tex]
Carrying out the multiplication and division:
[tex]\[ V_1 = \frac{88.312 \text{ mm Hg} \cdot \text{L}}{151 \text{ mm Hg}} \][/tex]
[tex]\[ V_1 = 0.5848476821192053 \text{ L} \][/tex]
Thus, the initial volume [tex]\( V_1 \)[/tex] is approximately [tex]\( 0.5848 \text{ L} \)[/tex].
Therefore, the gas that initially exerts a pressure of 151 mm Hg in the original container has a volume of [tex]\( \boxed{0.5848 \text{ L}} \)[/tex].
[tex]\[ P_1 \times V_1 = P_2 \times V_2 \][/tex]
Given data:
- Initial pressure, [tex]\( P_1 = 151 \text{ mm Hg} \)[/tex]
- Final pressure, [tex]\( P_2 = 166 \text{ mm Hg} \)[/tex]
- Final volume, [tex]\( V_2 = 0.532 \text{ L} \)[/tex]
We need to determine the initial volume, [tex]\( V_1 \)[/tex].
Rearranging the formula to solve for [tex]\( V_1 \)[/tex]:
[tex]\[ V_1 = \frac{P_2 \times V_2}{P_1} \][/tex]
Now let's substitute the given values into the equation:
[tex]\[ V_1 = \frac{166 \text{ mm Hg} \times 0.532 \text{ L}}{151 \text{ mm Hg}} \][/tex]
Carrying out the multiplication and division:
[tex]\[ V_1 = \frac{88.312 \text{ mm Hg} \cdot \text{L}}{151 \text{ mm Hg}} \][/tex]
[tex]\[ V_1 = 0.5848476821192053 \text{ L} \][/tex]
Thus, the initial volume [tex]\( V_1 \)[/tex] is approximately [tex]\( 0.5848 \text{ L} \)[/tex].
Therefore, the gas that initially exerts a pressure of 151 mm Hg in the original container has a volume of [tex]\( \boxed{0.5848 \text{ L}} \)[/tex].
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.