Explore Westonci.ca, the premier Q&A site that helps you find precise answers to your questions, no matter the topic. Ask your questions and receive accurate answers from professionals with extensive experience in various fields on our platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To solve this problem, we need to apply the principle of conservation of momentum. Momentum is the product of mass and velocity, and for a closed system, the total momentum before an event must equal the total momentum after the event.
1. Step 1: Identify the masses and velocities.
- Mass of April: [tex]\( m_{April} = 55 \, \text{kg} \)[/tex]
- Mass of the watermelon: [tex]\( m_{watermelon} = 2 \, \text{kg} \)[/tex]
- Velocity of the watermelon before being caught: [tex]\( v_{watermelon} = 5 \, \text{m/s} \)[/tex]
- Initial velocity of April (and the skateboard) before catching the watermelon: [tex]\( v_{April,initial} = 0 \, \text{m/s} \)[/tex]
2. Step 2: Calculate the total initial momentum of the system.
Since April is initially at rest, her initial momentum is zero.
- Initial momentum of April: [tex]\( p_{April,initial} = m_{April} \times v_{April,initial} = 55 \times 0 = 0 \, \text{kg} \cdot \text{m/s} \)[/tex]
- Initial momentum of the watermelon: [tex]\( p_{watermelon} = m_{watermelon} \times v_{watermelon} = 2 \times 5 = 10 \, \text{kg} \cdot \text{m/s} \)[/tex]
Therefore, the total initial momentum of the system is:
[tex]\[ p_{total,initial} = p_{April,initial} + p_{watermelon} = 0 + 10 = 10 \, \text{kg} \cdot \text{m/s} \][/tex]
3. Step 3: Set up the conservation of momentum equation.
After catching the watermelon, April and the watermelon (plus the skateboard) will move together with a common final velocity [tex]\( v_{final} \)[/tex].
- The total mass after catching the watermelon: [tex]\( m_{total} = m_{April} + m_{watermelon} = 55 + 2 = 57 \, \text{kg} \)[/tex]
The total initial momentum must equal the total final momentum:
[tex]\[ p_{total,initial} = m_{total} \times v_{final} \][/tex]
4. Step 4: Solve for the final velocity [tex]\( v_{final} \)[/tex].
[tex]\[ 10 \, \text{kg} \cdot \text{m/s} = 57 \, \text{kg} \times v_{final} \][/tex]
Solving for [tex]\( v_{final} \)[/tex]:
[tex]\[ v_{final} = \frac{10}{57} \approx 0.175 \, \text{m/s} \][/tex]
5. Step 5: Compare the calculated final velocity with the provided choices.
- A. [tex]\( 5 \, \text{m/s} \)[/tex]
- B. [tex]\( 11 \, \text{m/s} \)[/tex]
- C. [tex]\( 0.18 \, \text{m/s} \)[/tex]
- D. [tex]\( 0.09 \, \text{m/s} \)[/tex]
The closest choice to [tex]\( 0.175 \, \text{m/s} \)[/tex] is C. [tex]\( 0.18 \, \text{m/s} \)[/tex].
Therefore, the correct answer is:
C. [tex]\(0.18 \, \text{m/s}\)[/tex]
1. Step 1: Identify the masses and velocities.
- Mass of April: [tex]\( m_{April} = 55 \, \text{kg} \)[/tex]
- Mass of the watermelon: [tex]\( m_{watermelon} = 2 \, \text{kg} \)[/tex]
- Velocity of the watermelon before being caught: [tex]\( v_{watermelon} = 5 \, \text{m/s} \)[/tex]
- Initial velocity of April (and the skateboard) before catching the watermelon: [tex]\( v_{April,initial} = 0 \, \text{m/s} \)[/tex]
2. Step 2: Calculate the total initial momentum of the system.
Since April is initially at rest, her initial momentum is zero.
- Initial momentum of April: [tex]\( p_{April,initial} = m_{April} \times v_{April,initial} = 55 \times 0 = 0 \, \text{kg} \cdot \text{m/s} \)[/tex]
- Initial momentum of the watermelon: [tex]\( p_{watermelon} = m_{watermelon} \times v_{watermelon} = 2 \times 5 = 10 \, \text{kg} \cdot \text{m/s} \)[/tex]
Therefore, the total initial momentum of the system is:
[tex]\[ p_{total,initial} = p_{April,initial} + p_{watermelon} = 0 + 10 = 10 \, \text{kg} \cdot \text{m/s} \][/tex]
3. Step 3: Set up the conservation of momentum equation.
After catching the watermelon, April and the watermelon (plus the skateboard) will move together with a common final velocity [tex]\( v_{final} \)[/tex].
- The total mass after catching the watermelon: [tex]\( m_{total} = m_{April} + m_{watermelon} = 55 + 2 = 57 \, \text{kg} \)[/tex]
The total initial momentum must equal the total final momentum:
[tex]\[ p_{total,initial} = m_{total} \times v_{final} \][/tex]
4. Step 4: Solve for the final velocity [tex]\( v_{final} \)[/tex].
[tex]\[ 10 \, \text{kg} \cdot \text{m/s} = 57 \, \text{kg} \times v_{final} \][/tex]
Solving for [tex]\( v_{final} \)[/tex]:
[tex]\[ v_{final} = \frac{10}{57} \approx 0.175 \, \text{m/s} \][/tex]
5. Step 5: Compare the calculated final velocity with the provided choices.
- A. [tex]\( 5 \, \text{m/s} \)[/tex]
- B. [tex]\( 11 \, \text{m/s} \)[/tex]
- C. [tex]\( 0.18 \, \text{m/s} \)[/tex]
- D. [tex]\( 0.09 \, \text{m/s} \)[/tex]
The closest choice to [tex]\( 0.175 \, \text{m/s} \)[/tex] is C. [tex]\( 0.18 \, \text{m/s} \)[/tex].
Therefore, the correct answer is:
C. [tex]\(0.18 \, \text{m/s}\)[/tex]
We hope this was helpful. Please come back whenever you need more information or answers to your queries. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.