Discover answers to your most pressing questions at Westonci.ca, the ultimate Q&A platform that connects you with expert solutions. Discover a wealth of knowledge from experts across different disciplines on our comprehensive Q&A platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.

Find the distance between the lines [tex]\( t_1 \)[/tex] and [tex]\( t_2 \)[/tex].

[tex]\( t_1: y = -\frac{1}{2}x - \frac{1}{2} \)[/tex]

[tex]\( t_2: y = -\frac{1}{2}x + 1 \)[/tex]

Round your answer to the nearest tenth.

[tex]\(\square\)[/tex]


Sagot :

To determine the distance between two parallel lines in the form [tex]\( y = mx + b_1 \)[/tex] and [tex]\( y = mx + b_2 \)[/tex], we use the formula for the distance between two parallel lines:

[tex]\[ \text{distance} = \frac{|c_1 - c_2|}{\sqrt{a^2 + b^2}} \][/tex]

First, let's write the equations of the lines in the general form [tex]\( ax + by + c = 0 \)[/tex]:

For line [tex]\( t_1 \)[/tex]:
[tex]\[ y = -\frac{1}{2}x - \frac{1}{2} \][/tex]
Rewriting this in the general form:
[tex]\[ -\frac{1}{2}x + y + \frac{1}{2} = 0 \quad \text{or} \quad -\frac{1}{2}x + y + \frac{1}{2} = 0 \][/tex]
So, [tex]\( a_1 = -\frac{1}{2} \)[/tex], [tex]\( b_1 = 1 \)[/tex], and [tex]\( c_1 = \frac{1}{2} \)[/tex].

For line [tex]\( t_2 \)[/tex]:
[tex]\[ y = -\frac{1}{2}x + 1 \][/tex]
Rewriting this in the general form:
[tex]\[ -\frac{1}{2}x + y - 1 = 0 \quad \text{or} \quad -\frac{1}{2}x + y - 1 = 0 \][/tex]
So, [tex]\( a_2 = -\frac{1}{2} \)[/tex], [tex]\( b_2 = 1 \)[/tex], and [tex]\( c_2 = -1 \)[/tex].

Now, applying the distance formula:
[tex]\[ \text{distance} = \frac{|c_1 - c_2|}{\sqrt{a^2 + b^2}} \][/tex]

Substituting the values [tex]\( c_1 = \frac{1}{2} \)[/tex], [tex]\( c_2 = -1 \)[/tex], [tex]\( a = -\frac{1}{2} \)[/tex], and [tex]\( b = 1 \)[/tex]:
[tex]\[ \text{distance} = \frac{\left|\frac{1}{2} - (-1)\right|}{\sqrt{\left(-\frac{1}{2}\right)^2 + 1^2}} \][/tex]

Calculate the numerator:
[tex]\[ \left|\frac{1}{2} + 1\right| = \left|\frac{1}{2} + \frac{2}{2}\right| = \left|\frac{3}{2}\right| = \frac{3}{2} \][/tex]

Next, calculate the denominator:
[tex]\[ \sqrt{\left(-\frac{1}{2}\right)^2 + 1^2} = \sqrt{\frac{1}{4} + 1} = \sqrt{\frac{1}{4} + \frac{4}{4}} = \sqrt{\frac{5}{4}} = \frac{\sqrt{5}}{2} \][/tex]

Finally, the distance is:
[tex]\[ \text{distance} = \frac{\frac{3}{2}}{\frac{\sqrt{5}}{2}} = \frac{3}{\sqrt{5}} = \frac{3\sqrt{5}}{5} \][/tex]

Simplifying this, we calculate:
[tex]\[ \frac{3\sqrt{5}}{5} \approx \sqrt{5} \times 0.6 \approx 2.1213203435596424 \][/tex]

Rounding to the nearest tenth:
[tex]\[ \text{distance} \approx 2.1 \][/tex]

Thus, the distance between the lines [tex]\( t_1 \)[/tex] and [tex]\( t_2 \)[/tex] is approximately [tex]\( 2.1 \)[/tex].
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.