Get the answers you need at Westonci.ca, where our expert community is dedicated to providing you with accurate information. Get the answers you need quickly and accurately from a dedicated community of experts on our Q&A platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To find the equation of the perpendicular bisector of the line segment whose endpoints are [tex]\((-1, 1)\)[/tex] and [tex]\( (7, -5)\)[/tex], we will follow these steps:
### Step 1: Find the Midpoint of the Line Segment
The midpoint of a line segment with endpoints [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] is given by:
[tex]\[ \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right) \][/tex]
For the endpoints [tex]\((-1, 1)\)[/tex] and [tex]\((7, -5)\)[/tex]:
[tex]\[ x_1 = -1, \, y_1 = 1, \, x_2 = 7, \, y_2 = -5 \][/tex]
So, the midpoint is:
[tex]\[ \left(\frac{-1 + 7}{2}, \frac{1 - 5}{2}\right) = \left(\frac{6}{2}, \frac{-4}{2}\right) = (3, -2) \][/tex]
### Step 2: Calculate the Slope of the Line Segment
The slope [tex]\( m \)[/tex] of a line segment with endpoints [tex]\((x_1, y_1)\)[/tex] and [tex]\( (x_2, y_2)\)[/tex] is given by:
[tex]\[ m = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]
For the endpoints [tex]\((-1, 1)\)[/tex] and [tex]\((7, -5)\)[/tex]:
[tex]\[ m = \frac{-5 - 1}{7 - (-1)} = \frac{-6}{8} = -0.75 \][/tex]
### Step 3: Find the Slope of the Perpendicular Bisector
The slope of the perpendicular bisector is the negative reciprocal of the slope of the original line segment. If the slope of the original line is [tex]\( m \)[/tex], the slope of the perpendicular bisector [tex]\( m' \)[/tex] is:
[tex]\[ m' = -\frac{1}{m} \][/tex]
For [tex]\( m = -0.75 \)[/tex]:
[tex]\[ m' = -\frac{1}{-0.75} = \frac{4}{3} \approx 1.3333 \][/tex]
### Step 4: Write the Equation in Point-Slope Form
The point-slope form of a line equation is:
[tex]\[ y - y_1 = m(x - x_1) \][/tex]
Here, we use the midpoint [tex]\( (3, -2) \)[/tex] as [tex]\((x_1, y_1)\)[/tex] and the slope [tex]\( m' = 1.3333 \)[/tex]:
[tex]\[ y - (-2) = \frac{4}{3}(x - 3) \][/tex]
Simplified, this becomes:
[tex]\[ y + 2 = \frac{4}{3}(x - 3) \][/tex]
This is the equation of the perpendicular bisector in point-slope form.
### Step 1: Find the Midpoint of the Line Segment
The midpoint of a line segment with endpoints [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] is given by:
[tex]\[ \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right) \][/tex]
For the endpoints [tex]\((-1, 1)\)[/tex] and [tex]\((7, -5)\)[/tex]:
[tex]\[ x_1 = -1, \, y_1 = 1, \, x_2 = 7, \, y_2 = -5 \][/tex]
So, the midpoint is:
[tex]\[ \left(\frac{-1 + 7}{2}, \frac{1 - 5}{2}\right) = \left(\frac{6}{2}, \frac{-4}{2}\right) = (3, -2) \][/tex]
### Step 2: Calculate the Slope of the Line Segment
The slope [tex]\( m \)[/tex] of a line segment with endpoints [tex]\((x_1, y_1)\)[/tex] and [tex]\( (x_2, y_2)\)[/tex] is given by:
[tex]\[ m = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]
For the endpoints [tex]\((-1, 1)\)[/tex] and [tex]\((7, -5)\)[/tex]:
[tex]\[ m = \frac{-5 - 1}{7 - (-1)} = \frac{-6}{8} = -0.75 \][/tex]
### Step 3: Find the Slope of the Perpendicular Bisector
The slope of the perpendicular bisector is the negative reciprocal of the slope of the original line segment. If the slope of the original line is [tex]\( m \)[/tex], the slope of the perpendicular bisector [tex]\( m' \)[/tex] is:
[tex]\[ m' = -\frac{1}{m} \][/tex]
For [tex]\( m = -0.75 \)[/tex]:
[tex]\[ m' = -\frac{1}{-0.75} = \frac{4}{3} \approx 1.3333 \][/tex]
### Step 4: Write the Equation in Point-Slope Form
The point-slope form of a line equation is:
[tex]\[ y - y_1 = m(x - x_1) \][/tex]
Here, we use the midpoint [tex]\( (3, -2) \)[/tex] as [tex]\((x_1, y_1)\)[/tex] and the slope [tex]\( m' = 1.3333 \)[/tex]:
[tex]\[ y - (-2) = \frac{4}{3}(x - 3) \][/tex]
Simplified, this becomes:
[tex]\[ y + 2 = \frac{4}{3}(x - 3) \][/tex]
This is the equation of the perpendicular bisector in point-slope form.
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.