Westonci.ca is your trusted source for finding answers to a wide range of questions, backed by a knowledgeable community. Ask your questions and receive precise answers from experienced professionals across different disciplines. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To determine whether the inverse of a function [tex]\( F(x) \)[/tex] is itself a function, we need to understand the properties of [tex]\( F(x) \)[/tex].
1. One-to-One Function (Injective):
- A function [tex]\( F(x) \)[/tex] is one-to-one if every value of [tex]\( y \)[/tex] (output) corresponds to exactly one value of [tex]\( x \)[/tex] (input). This means [tex]\( F(x_1) \neq F(x_2) \)[/tex] whenever [tex]\( x_1 \neq x_2 \)[/tex].
- If [tex]\( F(x) \)[/tex] is one-to-one, every unique input maps to a unique output ensuring that [tex]\( F(x) \)[/tex] has an inverse function.
2. Inverse of a Function:
- The inverse function [tex]\( F^{-1}(x) \)[/tex] essentially reverses the role of the input and output of [tex]\( F(x) \)[/tex].
- For [tex]\( F^{-1}(x) \)[/tex] to be a function, each element of the output of [tex]\( F(x) \)[/tex] must map back to only one element of the input of [tex]\( F(x) \)[/tex].
- This requirement will be met if [tex]\( F(x) \)[/tex] is one-to-one.
Given these points, if [tex]\( F(x) \)[/tex] is a one-to-one function, its inverse [tex]\( F^{-1}(x) \)[/tex] will also be a function. This ensures that each output [tex]\( y \)[/tex] in [tex]\( F(x) \)[/tex] maps to exactly one input [tex]\( x \)[/tex] in the inverse, thereby making the inverse a valid function.
Given this understanding, the correct answer to the question:
```
The inverse of F(x) is a function.
○ A. True
○ B. False
```
is:
○ A. True
1. One-to-One Function (Injective):
- A function [tex]\( F(x) \)[/tex] is one-to-one if every value of [tex]\( y \)[/tex] (output) corresponds to exactly one value of [tex]\( x \)[/tex] (input). This means [tex]\( F(x_1) \neq F(x_2) \)[/tex] whenever [tex]\( x_1 \neq x_2 \)[/tex].
- If [tex]\( F(x) \)[/tex] is one-to-one, every unique input maps to a unique output ensuring that [tex]\( F(x) \)[/tex] has an inverse function.
2. Inverse of a Function:
- The inverse function [tex]\( F^{-1}(x) \)[/tex] essentially reverses the role of the input and output of [tex]\( F(x) \)[/tex].
- For [tex]\( F^{-1}(x) \)[/tex] to be a function, each element of the output of [tex]\( F(x) \)[/tex] must map back to only one element of the input of [tex]\( F(x) \)[/tex].
- This requirement will be met if [tex]\( F(x) \)[/tex] is one-to-one.
Given these points, if [tex]\( F(x) \)[/tex] is a one-to-one function, its inverse [tex]\( F^{-1}(x) \)[/tex] will also be a function. This ensures that each output [tex]\( y \)[/tex] in [tex]\( F(x) \)[/tex] maps to exactly one input [tex]\( x \)[/tex] in the inverse, thereby making the inverse a valid function.
Given this understanding, the correct answer to the question:
```
The inverse of F(x) is a function.
○ A. True
○ B. False
```
is:
○ A. True
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.