Explore Westonci.ca, the leading Q&A site where experts provide accurate and helpful answers to all your questions. Discover comprehensive solutions to your questions from a wide network of experts on our user-friendly platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To solve the problem of determining how many years it will take for a loan of [tex]$43,000 to grow to $[/tex]67,000 or more with an annual interest rate of 3.75%, compounded annually, we can follow these steps:
1. Identify the initial loan amount and the target amount.
- The initial loan amount: [tex]\( 43,000 \)[/tex] dollars.
- The target amount: [tex]\( 67,000 \)[/tex] dollars.
2. Understand the interest rate application.
- The interest rate is [tex]\( 3.75\% \)[/tex], which means each year the amount is multiplied by [tex]\( 1.0375 \)[/tex] (since [tex]\( 1 + 0.0375 = 1.0375 \)[/tex]).
3. Set up a compound interest formula.
- The formula for the amount [tex]\( A \)[/tex] after [tex]\( t \)[/tex] years, with an initial principal [tex]\( P \)[/tex] and an annual interest rate [tex]\( r \)[/tex], is:
[tex]\[ A = P \times (1 + r)^t \][/tex]
4. Initialize the calculations.
- Begin with the principal [tex]\( P = 43,000 \)[/tex].
5. Iterate year by year and apply the interest rate.
- Each year, multiply the current amount by [tex]\( 1.0375 \)[/tex], and count the number of years until the amount reaches or exceeds [tex]\( 67,000 \)[/tex].
6. Continue until the condition is met.
Performing this step-by-step, we find that it will take approximately 13 years for the loan amount to reach or exceed [tex]\( 67,000 \)[/tex].
Therefore, the smallest possible whole number answer for the number of years needed is [tex]\( \boxed{13} \)[/tex].
1. Identify the initial loan amount and the target amount.
- The initial loan amount: [tex]\( 43,000 \)[/tex] dollars.
- The target amount: [tex]\( 67,000 \)[/tex] dollars.
2. Understand the interest rate application.
- The interest rate is [tex]\( 3.75\% \)[/tex], which means each year the amount is multiplied by [tex]\( 1.0375 \)[/tex] (since [tex]\( 1 + 0.0375 = 1.0375 \)[/tex]).
3. Set up a compound interest formula.
- The formula for the amount [tex]\( A \)[/tex] after [tex]\( t \)[/tex] years, with an initial principal [tex]\( P \)[/tex] and an annual interest rate [tex]\( r \)[/tex], is:
[tex]\[ A = P \times (1 + r)^t \][/tex]
4. Initialize the calculations.
- Begin with the principal [tex]\( P = 43,000 \)[/tex].
5. Iterate year by year and apply the interest rate.
- Each year, multiply the current amount by [tex]\( 1.0375 \)[/tex], and count the number of years until the amount reaches or exceeds [tex]\( 67,000 \)[/tex].
6. Continue until the condition is met.
Performing this step-by-step, we find that it will take approximately 13 years for the loan amount to reach or exceed [tex]\( 67,000 \)[/tex].
Therefore, the smallest possible whole number answer for the number of years needed is [tex]\( \boxed{13} \)[/tex].
We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.