Westonci.ca is the premier destination for reliable answers to your questions, brought to you by a community of experts. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
Sure, we need to graph the line given by the equation [tex]\( y = -3x - 1 \)[/tex]. Here is a detailed, step-by-step explanation of how to do this:
### Step 1: Identify the slope and y-intercept
The equation [tex]\( y = -3x - 1 \)[/tex] is in slope-intercept form, [tex]\( y = mx + b \)[/tex], where:
- [tex]\( m \)[/tex] is the slope,
- [tex]\( b \)[/tex] is the y-intercept.
For this equation:
- The slope [tex]\( m \)[/tex] is [tex]\(-3\)[/tex],
- The y-intercept [tex]\( b \)[/tex] is [tex]\(-1\)[/tex].
### Step 2: Plot the y-intercept
Start by plotting the y-intercept on the graph. The y-intercept is the point where the line crosses the y-axis. For [tex]\( b = -1 \)[/tex], this point is [tex]\((0, -1)\)[/tex].
### Step 3: Use the slope to find another point
The slope tells us how to move from one point to another along the line. A slope of [tex]\(-3\)[/tex] means that for every 1 unit we move to the right (in the positive x-direction), we move 3 units down (in the negative y-direction).
Starting from the intercept [tex]\((0, -1)\)[/tex]:
- Move 1 unit to the right to [tex]\((1, -1)\)[/tex],
- Move 3 units down to [tex]\((1, -4)\)[/tex].
Now we have another point on the line: [tex]\((1, -4)\)[/tex].
### Step 4: Plot the second point
Plot the point [tex]\((1, -4)\)[/tex] on the graph.
### Step 5: Draw the line
Draw a straight line through the points [tex]\((0, -1)\)[/tex] and [tex]\((1, -4)\)[/tex]. This line should extend in both directions beyond these points.
### Step 6: Label the graph
Make sure to label the axes (x and y) and the equation of the line [tex]\( y = -3x - 1 \)[/tex] on the graph. You can also draw a small arrow on each end of the line to indicate that it extends infinitely.
### Example Graph
```
|
4 | .
3 |
2 |
1 |
|
-1.5 |
-2.5 +.-----------------+
| 0 0 1 2 3
|
```
On a coordinate system, with the x-axis and y-axis intersecting at (0,0), the line y = -3x - 1 crosses the y-axis at (0, -1) and extends in both directions.
By plotting these points and drawing the line through them, we have successfully graphed the equation [tex]\( y = -3x - 1 \)[/tex].
### Step 1: Identify the slope and y-intercept
The equation [tex]\( y = -3x - 1 \)[/tex] is in slope-intercept form, [tex]\( y = mx + b \)[/tex], where:
- [tex]\( m \)[/tex] is the slope,
- [tex]\( b \)[/tex] is the y-intercept.
For this equation:
- The slope [tex]\( m \)[/tex] is [tex]\(-3\)[/tex],
- The y-intercept [tex]\( b \)[/tex] is [tex]\(-1\)[/tex].
### Step 2: Plot the y-intercept
Start by plotting the y-intercept on the graph. The y-intercept is the point where the line crosses the y-axis. For [tex]\( b = -1 \)[/tex], this point is [tex]\((0, -1)\)[/tex].
### Step 3: Use the slope to find another point
The slope tells us how to move from one point to another along the line. A slope of [tex]\(-3\)[/tex] means that for every 1 unit we move to the right (in the positive x-direction), we move 3 units down (in the negative y-direction).
Starting from the intercept [tex]\((0, -1)\)[/tex]:
- Move 1 unit to the right to [tex]\((1, -1)\)[/tex],
- Move 3 units down to [tex]\((1, -4)\)[/tex].
Now we have another point on the line: [tex]\((1, -4)\)[/tex].
### Step 4: Plot the second point
Plot the point [tex]\((1, -4)\)[/tex] on the graph.
### Step 5: Draw the line
Draw a straight line through the points [tex]\((0, -1)\)[/tex] and [tex]\((1, -4)\)[/tex]. This line should extend in both directions beyond these points.
### Step 6: Label the graph
Make sure to label the axes (x and y) and the equation of the line [tex]\( y = -3x - 1 \)[/tex] on the graph. You can also draw a small arrow on each end of the line to indicate that it extends infinitely.
### Example Graph
```
|
4 | .
3 |
2 |
1 |
|
-1.5 |
-2.5 +.-----------------+
| 0 0 1 2 3
|
```
On a coordinate system, with the x-axis and y-axis intersecting at (0,0), the line y = -3x - 1 crosses the y-axis at (0, -1) and extends in both directions.
By plotting these points and drawing the line through them, we have successfully graphed the equation [tex]\( y = -3x - 1 \)[/tex].
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.