Westonci.ca is your trusted source for accurate answers to all your questions. Join our community and start learning today! Experience the convenience of getting reliable answers to your questions from a vast network of knowledgeable experts. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
Certainly! Let's solve the problem step by step, considering the half-life property of the substance.
### Key Concepts:
1. Half-Life: The time required for a quantity to reduce to half its initial value.
2. Exponential Decay Formula:
[tex]\[ \text{Remaining Amount} = \text{Initial Amount} \times \left(\frac{1}{2}\right)^{\frac{\text{time}}{\text{half-life}}} \][/tex]
### Given Data:
1. Initial weight of bromine sample, [tex]\( \text{Initial Amount} = 20 \)[/tex] mg.
2. Half-life of bromine, [tex]\( \text{half-life} = 57 \)[/tex] hours.
We need to find out how much of the sample will remain after various time intervals.
### Time Interval 1: After 57 hours
- Using the exponential decay formula:
[tex]\[ \text{Remaining Amount} = 20 \times \left(\frac{1}{2}\right)^{\frac{57}{57}} = 20 \times \left(\frac{1}{2}\right)^{1} = 20 \times 0.5 = 10 \text{ mg} \][/tex]
So, after 57 hours, 10 mg of the sample will remain.
### Time Interval 2: After 28.5 hours
- Using the exponential decay formula:
[tex]\[ \text{Remaining Amount} = 20 \times \left(\frac{1}{2}\right)^{\frac{28.5}{57}} = 20 \times \left(\frac{1}{2}\right)^{0.5} \][/tex]
We know that:
[tex]\[ \left(\frac{1}{2}\right)^{0.5} = \frac{1}{\sqrt{2}} \approx 0.7071 \][/tex]
So:
[tex]\[ \text{Remaining Amount} = 20 \times 0.7071 \approx 14.14 \text{ mg} \][/tex]
Hence, after 28.5 hours, approximately 14.142 mg of the sample will remain.
### Time Interval 3: After 1 hour
- Using the exponential decay formula:
[tex]\[ \text{Remaining Amount} = 20 \times \left(\frac{1}{2}\right)^{\frac{1}{57}} \][/tex]
Approximate calculation gives:
[tex]\[ \left(\frac{1}{2}\right)^{\frac{1}{57}} \approx 0.9878 \][/tex]
So:
[tex]\[ \text{Remaining Amount} = 20 \times 0.9878 \approx 19.76 \text{ mg} \][/tex]
After 1 hour, approximately 19.758 mg of the sample will remain.
### Summary
- After 57 hours: 10 mg
- After 28.5 hours: Approximately 14.142 mg
- After 1 hour: Approximately 19.758 mg
These calculations demonstrate how the weight of the bromine sample decreases over time given its half-life.
### Key Concepts:
1. Half-Life: The time required for a quantity to reduce to half its initial value.
2. Exponential Decay Formula:
[tex]\[ \text{Remaining Amount} = \text{Initial Amount} \times \left(\frac{1}{2}\right)^{\frac{\text{time}}{\text{half-life}}} \][/tex]
### Given Data:
1. Initial weight of bromine sample, [tex]\( \text{Initial Amount} = 20 \)[/tex] mg.
2. Half-life of bromine, [tex]\( \text{half-life} = 57 \)[/tex] hours.
We need to find out how much of the sample will remain after various time intervals.
### Time Interval 1: After 57 hours
- Using the exponential decay formula:
[tex]\[ \text{Remaining Amount} = 20 \times \left(\frac{1}{2}\right)^{\frac{57}{57}} = 20 \times \left(\frac{1}{2}\right)^{1} = 20 \times 0.5 = 10 \text{ mg} \][/tex]
So, after 57 hours, 10 mg of the sample will remain.
### Time Interval 2: After 28.5 hours
- Using the exponential decay formula:
[tex]\[ \text{Remaining Amount} = 20 \times \left(\frac{1}{2}\right)^{\frac{28.5}{57}} = 20 \times \left(\frac{1}{2}\right)^{0.5} \][/tex]
We know that:
[tex]\[ \left(\frac{1}{2}\right)^{0.5} = \frac{1}{\sqrt{2}} \approx 0.7071 \][/tex]
So:
[tex]\[ \text{Remaining Amount} = 20 \times 0.7071 \approx 14.14 \text{ mg} \][/tex]
Hence, after 28.5 hours, approximately 14.142 mg of the sample will remain.
### Time Interval 3: After 1 hour
- Using the exponential decay formula:
[tex]\[ \text{Remaining Amount} = 20 \times \left(\frac{1}{2}\right)^{\frac{1}{57}} \][/tex]
Approximate calculation gives:
[tex]\[ \left(\frac{1}{2}\right)^{\frac{1}{57}} \approx 0.9878 \][/tex]
So:
[tex]\[ \text{Remaining Amount} = 20 \times 0.9878 \approx 19.76 \text{ mg} \][/tex]
After 1 hour, approximately 19.758 mg of the sample will remain.
### Summary
- After 57 hours: 10 mg
- After 28.5 hours: Approximately 14.142 mg
- After 1 hour: Approximately 19.758 mg
These calculations demonstrate how the weight of the bromine sample decreases over time given its half-life.
We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.