Find the best solutions to your questions at Westonci.ca, the premier Q&A platform with a community of knowledgeable experts. Get expert answers to your questions quickly and accurately from our dedicated community of professionals. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To determine the angular displacement of a figure skater who starts from rest and accelerates with a constant acceleration of 100 °/s² over a time period of 1 second, we can use the kinematic equation for rotational motion:
[tex]\[ \theta = \omega_0 t + \frac{1}{2} \alpha t^2 \][/tex]
where:
- [tex]\(\theta\)[/tex] is the angular displacement.
- [tex]\(\omega_0\)[/tex] is the initial angular velocity.
- [tex]\(\alpha\)[/tex] is the angular acceleration.
- [tex]\(t\)[/tex] is the time.
Given the problem parameters:
- The skater starts from rest, so the initial angular velocity [tex]\(\omega_0\)[/tex] is 0 °/s.
- The angular acceleration [tex]\(\alpha\)[/tex] is 100 °/s².
- The time [tex]\(t\)[/tex] is 1 second.
Plugging in these values:
[tex]\[ \theta = 0 \cdot 1 + \frac{1}{2} \cdot 100 \cdot 1^2 \][/tex]
[tex]\[ \theta = 0 + \frac{1}{2} \cdot 100 \cdot 1 \][/tex]
[tex]\[ \theta = \frac{100}{2} \][/tex]
[tex]\[ \theta = 50 \text{ degrees} \][/tex]
Thus, the angular displacement over 1 second is [tex]\(50^\circ\)[/tex].
Therefore, the correct answer is:
50°
[tex]\[ \theta = \omega_0 t + \frac{1}{2} \alpha t^2 \][/tex]
where:
- [tex]\(\theta\)[/tex] is the angular displacement.
- [tex]\(\omega_0\)[/tex] is the initial angular velocity.
- [tex]\(\alpha\)[/tex] is the angular acceleration.
- [tex]\(t\)[/tex] is the time.
Given the problem parameters:
- The skater starts from rest, so the initial angular velocity [tex]\(\omega_0\)[/tex] is 0 °/s.
- The angular acceleration [tex]\(\alpha\)[/tex] is 100 °/s².
- The time [tex]\(t\)[/tex] is 1 second.
Plugging in these values:
[tex]\[ \theta = 0 \cdot 1 + \frac{1}{2} \cdot 100 \cdot 1^2 \][/tex]
[tex]\[ \theta = 0 + \frac{1}{2} \cdot 100 \cdot 1 \][/tex]
[tex]\[ \theta = \frac{100}{2} \][/tex]
[tex]\[ \theta = 50 \text{ degrees} \][/tex]
Thus, the angular displacement over 1 second is [tex]\(50^\circ\)[/tex].
Therefore, the correct answer is:
50°
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.