Welcome to Westonci.ca, the place where your questions are answered by a community of knowledgeable contributors. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To find the number of calories in one beef burrito and one cheeseburger, we need to solve the system of linear equations given by the problem. Let’s denote the number of calories in one beef burrito as [tex]\( B \)[/tex] and the number of calories in one cheeseburger as [tex]\( C \)[/tex].
We are given two pieces of information:
1. One beef burrito and two cheeseburgers together provide 2870 calories.
2. Two beef burritos and one cheeseburger together provide 3370 calories.
From this information, we can set up the following system of equations:
[tex]\[ B + 2C = 2870 \][/tex]
[tex]\[ 2B + C = 3370 \][/tex]
To solve this system, we can use the method of substitution or elimination. Here, we'll use the elimination method.
Step 1: Multiply the first equation by 2 to align the coefficients of [tex]\( B \)[/tex]:
[tex]\[ 2(B + 2C) = 2 \times 2870 \][/tex]
This simplifies to:
[tex]\[ 2B + 4C = 5740 \][/tex]
Step 2: Subtract the second equation from this new equation:
[tex]\[ (2B + 4C) - (2B + C) = 5740 - 3370 \][/tex]
This simplifies to:
[tex]\[ 4C - C = 5740 - 3370 \][/tex]
[tex]\[ 3C = 2370 \][/tex]
Step 3: Solve for [tex]\( C \)[/tex]:
[tex]\[ C = \frac{2370}{3} \][/tex]
[tex]\[ C = 790 \][/tex]
So, each cheeseburger contains 790 calories.
Step 4: Substitute the value of [tex]\( C \)[/tex] back into the first equation to solve for [tex]\( B \)[/tex]:
[tex]\[ B + 2(790) = 2870 \][/tex]
[tex]\[ B + 1580 = 2870 \][/tex]
[tex]\[ B = 2870 - 1580 \][/tex]
[tex]\[ B = 1290 \][/tex]
So, each beef burrito contains 1290 calories.
Hence, the caloric contents are:
- One beef burrito contains 1290 calories.
- One cheeseburger contains 790 calories.
We are given two pieces of information:
1. One beef burrito and two cheeseburgers together provide 2870 calories.
2. Two beef burritos and one cheeseburger together provide 3370 calories.
From this information, we can set up the following system of equations:
[tex]\[ B + 2C = 2870 \][/tex]
[tex]\[ 2B + C = 3370 \][/tex]
To solve this system, we can use the method of substitution or elimination. Here, we'll use the elimination method.
Step 1: Multiply the first equation by 2 to align the coefficients of [tex]\( B \)[/tex]:
[tex]\[ 2(B + 2C) = 2 \times 2870 \][/tex]
This simplifies to:
[tex]\[ 2B + 4C = 5740 \][/tex]
Step 2: Subtract the second equation from this new equation:
[tex]\[ (2B + 4C) - (2B + C) = 5740 - 3370 \][/tex]
This simplifies to:
[tex]\[ 4C - C = 5740 - 3370 \][/tex]
[tex]\[ 3C = 2370 \][/tex]
Step 3: Solve for [tex]\( C \)[/tex]:
[tex]\[ C = \frac{2370}{3} \][/tex]
[tex]\[ C = 790 \][/tex]
So, each cheeseburger contains 790 calories.
Step 4: Substitute the value of [tex]\( C \)[/tex] back into the first equation to solve for [tex]\( B \)[/tex]:
[tex]\[ B + 2(790) = 2870 \][/tex]
[tex]\[ B + 1580 = 2870 \][/tex]
[tex]\[ B = 2870 - 1580 \][/tex]
[tex]\[ B = 1290 \][/tex]
So, each beef burrito contains 1290 calories.
Hence, the caloric contents are:
- One beef burrito contains 1290 calories.
- One cheeseburger contains 790 calories.
We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.