Find the information you're looking for at Westonci.ca, the trusted Q&A platform with a community of knowledgeable experts. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
Sure! Let's start from the given formula for the volume of a rectangular prism:
[tex]\[ V = l \cdot w \cdot h \][/tex]
where:
- [tex]\( V \)[/tex] is the volume,
- [tex]\( l \)[/tex] is the length of the base,
- [tex]\( w \)[/tex] is the width of the base,
- [tex]\( h \)[/tex] is the height of the prism.
Our goal is to find the width [tex]\( w \)[/tex] when the volume [tex]\( V \)[/tex], the length [tex]\( l \)[/tex], and the height [tex]\( h \)[/tex] are already known.
To isolate [tex]\( w \)[/tex], we need to rearrange the formula. We do this by dividing both sides of the equation by [tex]\( l \cdot h \)[/tex]:
[tex]\[ \frac{V}{l \cdot h} = \frac{l \cdot w \cdot h}{l \cdot h} \][/tex]
This simplifies to:
[tex]\[ w = \frac{V}{l \cdot h} \][/tex]
Therefore, to find the width [tex]\( w \)[/tex], we can use the formula:
[tex]\[ w = \frac{V}{l \cdot h} \][/tex]
Let's plug in the given values as an example. Suppose the volume [tex]\( V \)[/tex] of the prism is 100 cubic units, the length [tex]\( l \)[/tex] of the base is 5 units, and the height [tex]\( h \)[/tex] of the prism is 4 units. Then:
[tex]\[ w = \frac{100}{5 \cdot 4} \][/tex]
Calculate the denominator first:
[tex]\[ 5 \cdot 4 = 20 \][/tex]
Then divide the volume by this product:
[tex]\[ w = \frac{100}{20} = 5 \][/tex]
So, the width [tex]\( w \)[/tex] of the base of the prism is 5 units.
The correct answer is:
[tex]\[ w = \frac{V}{l \cdot h} \][/tex]
[tex]\[ V = l \cdot w \cdot h \][/tex]
where:
- [tex]\( V \)[/tex] is the volume,
- [tex]\( l \)[/tex] is the length of the base,
- [tex]\( w \)[/tex] is the width of the base,
- [tex]\( h \)[/tex] is the height of the prism.
Our goal is to find the width [tex]\( w \)[/tex] when the volume [tex]\( V \)[/tex], the length [tex]\( l \)[/tex], and the height [tex]\( h \)[/tex] are already known.
To isolate [tex]\( w \)[/tex], we need to rearrange the formula. We do this by dividing both sides of the equation by [tex]\( l \cdot h \)[/tex]:
[tex]\[ \frac{V}{l \cdot h} = \frac{l \cdot w \cdot h}{l \cdot h} \][/tex]
This simplifies to:
[tex]\[ w = \frac{V}{l \cdot h} \][/tex]
Therefore, to find the width [tex]\( w \)[/tex], we can use the formula:
[tex]\[ w = \frac{V}{l \cdot h} \][/tex]
Let's plug in the given values as an example. Suppose the volume [tex]\( V \)[/tex] of the prism is 100 cubic units, the length [tex]\( l \)[/tex] of the base is 5 units, and the height [tex]\( h \)[/tex] of the prism is 4 units. Then:
[tex]\[ w = \frac{100}{5 \cdot 4} \][/tex]
Calculate the denominator first:
[tex]\[ 5 \cdot 4 = 20 \][/tex]
Then divide the volume by this product:
[tex]\[ w = \frac{100}{20} = 5 \][/tex]
So, the width [tex]\( w \)[/tex] of the base of the prism is 5 units.
The correct answer is:
[tex]\[ w = \frac{V}{l \cdot h} \][/tex]
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.