Welcome to Westonci.ca, where finding answers to your questions is made simple by our community of experts. Ask your questions and receive accurate answers from professionals with extensive experience in various fields on our platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
Answer:
The correct statements are B and D.
Step-by-step explanation:
The equation [tex](x-3)^2+(y+1)^2=9[/tex] reminds us of the circle equation [tex]\boxed{(x-a)^2+(y-b)^2=r^2}[/tex], where:
- [tex](a,b)[/tex] = coordinate of the circle's center
- [tex]r[/tex] = radius
In order to find the center and the radius, we convert the equation into the standard form:
[tex](x-3)^2+(y+1)^2=9[/tex]
[tex](x-(3))^2+(y-(-1))^2=3^2[/tex]
Therefore:
- center [tex](a,b)[/tex] = (3, -1)
- radius ([tex]r[/tex]) = 3
Hence, options A and C are incorrect and option B is correct.
for option D:
When the equation intersects the x-axis, the y-value = 0.
[tex](x-3)^2+(y+1)^2=9[/tex] → substitute [tex]y[/tex] with 0
[tex](x-3)^2+(0+1)^2=9[/tex]
[tex](x-3)^2=9-1[/tex]
[tex]x-3=\pm\sqrt{8}[/tex]
[tex]x=\pm2\sqrt{2} +3[/tex]
[tex]x=2\sqrt{2} +3\ or\ -2\sqrt{2} +3[/tex]
Since there are 2 solutions for x-value, then the equations intersects the x-axis twice. (option D is correct)
for option E:
When the equation intersects the y-axis, the x-value = 0.
[tex](x-3)^2+(y+1)^2=9[/tex] → substitute [tex]x[/tex] with 0
[tex](0-3)^2+(y+1)^2=9[/tex]
[tex](y+1)^2=9-9[/tex]
[tex]y+1=0[/tex]
[tex]y=-1[/tex]
Since there is only 1 solution for y-value, then the equations tangent to the y-axis. (option E is incorrect)
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.