At Westonci.ca, we make it easy for you to get the answers you need from a community of knowledgeable individuals. Get quick and reliable answers to your questions from a dedicated community of professionals on our platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
Sure! Let's solve this step-by-step.
### Step-by-Step Solution
1. Understand the Given Values:
- The mean score [tex]\( (\mu) \)[/tex] is 165.
- The standard deviation [tex]\( (\sigma) \)[/tex] is 13.
- The total number of games [tex]\( (N) \)[/tex] is 90.
- The target score is 193.
2. Calculate the Z-Score:
- The Z-score formula is:
[tex]\[ Z = \frac{X - \mu}{\sigma} \][/tex]
- Plug in the values [tex]\( X = 193 \)[/tex], [tex]\( \mu = 165 \)[/tex], and [tex]\( \sigma = 13 \)[/tex]:
[tex]\[ Z = \frac{193 - 165}{13} = \frac{28}{13} \approx 2.15 \][/tex]
3. Find the Probability:
- We will use the cumulative distribution function (CDF) of the normal distribution to find the probability that a score is less than the Z-score calculated.
- The CDF value corresponding to a Z-score of approximately 2.15 is 0.9844 (rounded to four decimal places).
4. Calculate the Expected Number of Games:
- To find the expected number of games with a score less than 193, multiply the total number of games [tex]\( (N) \)[/tex] by the probability obtained:
[tex]\[ \text{Expected number of games} = N \times \text{Probability} = 90 \times 0.9844 \approx 88.59 \][/tex]
5. Round to the Nearest Whole Number:
- 88.59 rounded to the nearest whole number is 89.
### Conclusion
Out of the 90 games that Nevaeh bowled last year, she is expected to score less than 193 in approximately 89 of them.
### Step-by-Step Solution
1. Understand the Given Values:
- The mean score [tex]\( (\mu) \)[/tex] is 165.
- The standard deviation [tex]\( (\sigma) \)[/tex] is 13.
- The total number of games [tex]\( (N) \)[/tex] is 90.
- The target score is 193.
2. Calculate the Z-Score:
- The Z-score formula is:
[tex]\[ Z = \frac{X - \mu}{\sigma} \][/tex]
- Plug in the values [tex]\( X = 193 \)[/tex], [tex]\( \mu = 165 \)[/tex], and [tex]\( \sigma = 13 \)[/tex]:
[tex]\[ Z = \frac{193 - 165}{13} = \frac{28}{13} \approx 2.15 \][/tex]
3. Find the Probability:
- We will use the cumulative distribution function (CDF) of the normal distribution to find the probability that a score is less than the Z-score calculated.
- The CDF value corresponding to a Z-score of approximately 2.15 is 0.9844 (rounded to four decimal places).
4. Calculate the Expected Number of Games:
- To find the expected number of games with a score less than 193, multiply the total number of games [tex]\( (N) \)[/tex] by the probability obtained:
[tex]\[ \text{Expected number of games} = N \times \text{Probability} = 90 \times 0.9844 \approx 88.59 \][/tex]
5. Round to the Nearest Whole Number:
- 88.59 rounded to the nearest whole number is 89.
### Conclusion
Out of the 90 games that Nevaeh bowled last year, she is expected to score less than 193 in approximately 89 of them.
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.