Welcome to Westonci.ca, where finding answers to your questions is made simple by our community of experts. Join our platform to get reliable answers to your questions from a knowledgeable community of experts. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
Certainly! Let's solve the quadratic equation [tex]\(2x^2 + 5x + 5 = 0\)[/tex] step-by-step using the quadratic formula.
The general form of a quadratic equation is:
[tex]\[ ax^2 + bx + c = 0 \][/tex]
In this case, we have:
[tex]\[ a = 2, b = 5, \text{and } c = 5 \][/tex]
The quadratic formula is given by:
[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
Next, we need to find the discriminant (the part under the square root):
[tex]\[ \Delta = b^2 - 4ac \][/tex]
Calculate the discriminant:
[tex]\[ \Delta = 5^2 - 4(2)(5) = 25 - 40 = -15 \][/tex]
Since the discriminant is negative ([tex]\(\Delta < 0\)[/tex]), the solutions will be complex numbers. We will have to use the imaginary unit [tex]\(i\)[/tex] to express the square root of a negative number.
The solutions for the quadratic equation are:
[tex]\[ x = \frac{-b \pm \sqrt{\Delta}}{2a} \][/tex]
Substituting the values of [tex]\(a\)[/tex], [tex]\(b\)[/tex], and [tex]\(\Delta\)[/tex]:
[tex]\[ x = \frac{-5 \pm \sqrt{-15}}{2 \cdot 2} \][/tex]
[tex]\[ x = \frac{-5 \pm \sqrt{15}i}{4} \][/tex]
This simplifies to two solutions:
[tex]\[ x_1 = \frac{-5 + \sqrt{15}i}{4} \][/tex]
[tex]\[ x_2 = \frac{-5 - \sqrt{15}i}{4} \][/tex]
Thus, the solutions to the equation [tex]\(2x^2 + 5x + 5 = 0\)[/tex] are:
[tex]\[ \left(\frac{-5 + \sqrt{15}i}{4}, \frac{-5 - \sqrt{15}i}{4}\right) \][/tex]
In summary, the solution set is:
[tex]\[ x = \frac{-5 + \sqrt{15}i}{4}, \frac{-5 - \sqrt{15}i}{4} \][/tex]
The general form of a quadratic equation is:
[tex]\[ ax^2 + bx + c = 0 \][/tex]
In this case, we have:
[tex]\[ a = 2, b = 5, \text{and } c = 5 \][/tex]
The quadratic formula is given by:
[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
Next, we need to find the discriminant (the part under the square root):
[tex]\[ \Delta = b^2 - 4ac \][/tex]
Calculate the discriminant:
[tex]\[ \Delta = 5^2 - 4(2)(5) = 25 - 40 = -15 \][/tex]
Since the discriminant is negative ([tex]\(\Delta < 0\)[/tex]), the solutions will be complex numbers. We will have to use the imaginary unit [tex]\(i\)[/tex] to express the square root of a negative number.
The solutions for the quadratic equation are:
[tex]\[ x = \frac{-b \pm \sqrt{\Delta}}{2a} \][/tex]
Substituting the values of [tex]\(a\)[/tex], [tex]\(b\)[/tex], and [tex]\(\Delta\)[/tex]:
[tex]\[ x = \frac{-5 \pm \sqrt{-15}}{2 \cdot 2} \][/tex]
[tex]\[ x = \frac{-5 \pm \sqrt{15}i}{4} \][/tex]
This simplifies to two solutions:
[tex]\[ x_1 = \frac{-5 + \sqrt{15}i}{4} \][/tex]
[tex]\[ x_2 = \frac{-5 - \sqrt{15}i}{4} \][/tex]
Thus, the solutions to the equation [tex]\(2x^2 + 5x + 5 = 0\)[/tex] are:
[tex]\[ \left(\frac{-5 + \sqrt{15}i}{4}, \frac{-5 - \sqrt{15}i}{4}\right) \][/tex]
In summary, the solution set is:
[tex]\[ x = \frac{-5 + \sqrt{15}i}{4}, \frac{-5 - \sqrt{15}i}{4} \][/tex]
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.