At Westonci.ca, we provide reliable answers to your questions from a community of experts. Start exploring today! Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To determine the area of the semicircle with a given perimeter of 5.14 millimeters, we can follow these steps:
1. Understanding the Perimeter of a Semicircle:
The perimeter (or circumference) of a semicircle formula includes the straight-line diameter and the curved edge of the semicircle. It is given by:
[tex]\[ \text{Perimeter} = \pi r + 2r \][/tex]
where [tex]\( r \)[/tex] is the radius of the semicircle.
2. Solving for the Radius:
Given the perimeter of 5.14 millimeters:
[tex]\[ 5.14 = \pi r + 2r \][/tex]
Factor [tex]\( r \)[/tex] out of the equation:
[tex]\[ 5.14 = r(\pi + 2) \][/tex]
Solve for [tex]\( r \)[/tex]:
[tex]\[ r = \frac{5.14}{\pi + 2} \][/tex]
3. Using the Given Value of [tex]\(\pi\)[/tex]:
Given [tex]\(\pi \approx 3.14\)[/tex], substitute this into the equation:
[tex]\[ r = \frac{5.14}{3.14 + 2} = \frac{5.14}{5.14} \approx 1.00 \, \text{millimeters} \][/tex]
4. Calculating the Area of the Semicircle:
The area of a semicircle can be calculated using the formula:
[tex]\[ \text{Area} = \frac{1}{2} \pi r^2 \][/tex]
Substitute [tex]\( r = 1.00 \, \text{millimeters} \)[/tex] and [tex]\(\pi \approx 3.14\)[/tex] into the formula:
[tex]\[ \text{Area} = \frac{1}{2} \times 3.14 \times (1.00)^2 = \frac{1}{2} \times 3.14 \times 1.00 = 1.57 \, \text{square millimeters} \][/tex]
5. Rounding:
The area is already rounded to the nearest hundredth place.
Therefore, the area of the semicircle is:
[tex]\[ \boxed{1.57} \, \text{square millimeters} \][/tex]
1. Understanding the Perimeter of a Semicircle:
The perimeter (or circumference) of a semicircle formula includes the straight-line diameter and the curved edge of the semicircle. It is given by:
[tex]\[ \text{Perimeter} = \pi r + 2r \][/tex]
where [tex]\( r \)[/tex] is the radius of the semicircle.
2. Solving for the Radius:
Given the perimeter of 5.14 millimeters:
[tex]\[ 5.14 = \pi r + 2r \][/tex]
Factor [tex]\( r \)[/tex] out of the equation:
[tex]\[ 5.14 = r(\pi + 2) \][/tex]
Solve for [tex]\( r \)[/tex]:
[tex]\[ r = \frac{5.14}{\pi + 2} \][/tex]
3. Using the Given Value of [tex]\(\pi\)[/tex]:
Given [tex]\(\pi \approx 3.14\)[/tex], substitute this into the equation:
[tex]\[ r = \frac{5.14}{3.14 + 2} = \frac{5.14}{5.14} \approx 1.00 \, \text{millimeters} \][/tex]
4. Calculating the Area of the Semicircle:
The area of a semicircle can be calculated using the formula:
[tex]\[ \text{Area} = \frac{1}{2} \pi r^2 \][/tex]
Substitute [tex]\( r = 1.00 \, \text{millimeters} \)[/tex] and [tex]\(\pi \approx 3.14\)[/tex] into the formula:
[tex]\[ \text{Area} = \frac{1}{2} \times 3.14 \times (1.00)^2 = \frac{1}{2} \times 3.14 \times 1.00 = 1.57 \, \text{square millimeters} \][/tex]
5. Rounding:
The area is already rounded to the nearest hundredth place.
Therefore, the area of the semicircle is:
[tex]\[ \boxed{1.57} \, \text{square millimeters} \][/tex]
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.